
 Best of Study bestofstudy.com

Agile Technologies

 Module-5

Deliver Value: Exploit Your Agility, Only Releasable Code Has Value, Deliver Business

Results, Deliver Frequently, Seek Technical Excellence: Software Doesn’t Exist, Design

Is for Understanding, Design Trade-offs, Quality with a Name, Great Design, Universal

Design Principles, Principles in Practice, Pursue Mastery

 Best of Study bestofstudy.com

Deliver Value

Your software only begins to have real value when it reaches users. Only at that point do
you start to generate trust, to get the most important kinds of feedback, and to
demonstrate a useful return on investment. That’s why successful agile projects deliver
value early, often, and repeatedly.

Exploit Your Agility

Simplicity of code and process are aesthetically pleasing. Yet there’s a more important
reason why agility helps you create great software: it improves your ability to recognize
and take advantage of new opportunities.

You may discover a brilliant new technique that simplifies your code, or your customer
may develop a new business practice that saves time and money.

Want to deliver real value? Delivering value to your customer is your most important
job. Aggressively pursuing feedback from your customer, from real users, from other
team members, and from your code itself as early and as often as possible allows you to
continue to learn and improve your understanding of the project. It also reveals new
opportunities as they appear.

Agility requires you to work in small steps, not giant leaps. A small initial investment of
time and resources, properly applied, begins producing quantifiable value immediately.

As well, committing to small amounts of change makes change itself more possible.

Aggressively seeking feedback and working in small steps allows you to defer your
investment of resources until the last responsible moment.

In Practice

XP exploits agility by removing the time between taking an action and observing its
results, which improves your ability to learn from this feedback. This is especially
apparent when the whole team sits together. Developing features closely with the on-
site customer allows you to identify potential misunderstandings and provides nearly
instant responses to questions.

Including real customers in the process with frequent deliveries of the actual software
demonstrates its current value to them.

The short work unit of iterations and frequent demos and releases create a reliable
rhythm to make measured process adjustments.

 Best of Study bestofstudy.com

Beyond Practices

I worked for a small startup whose major product was an inventory management
system targeted at a specific retail industry. We had the top retailers and manufacturers
lined up to buy our project. We were months away from delivery when our biggest
customer ran into a problem: the license for their existing point-of-sale system suddenly
expired.

The software included a call-home system that checked with the vendor before starting.
Our plans included developing our own POS system, but that was at least several
months away.

Our current system managed inventory, but we hadn’t done specific research on
supporting various terminal types, credit card scanners, and receipt printers.

This was our largest customer, and without its business, we’d never succeed.

After discussing our options and the project’s requirements with the customer, we
decided that we could build just enough of the POS system within six weeks that they
could switch to our software and avoid a $30,000 payment to the other vendor.

We shifted two-thirds of our development team to the POS project. Though we started
from an open source project we’d found earlier, we ended up customizing it heavily.

After two weeks of development, we delivered the first iteration on a new machine we
had built for the customer to test. We delivered weekly after that. Though it was hard
work, we gradually added new features based on the way our customer did business.

Finally, the only remaining task was to change a few lines in the GUI configuration to
match the customer’s store colors. We saved our customer plenty of money, and we
saved our account.

Only Releasable Code Has Value

Having the best, most beautiful code in the world matters very little unless it does what
the customer wants. It’s also true that having code that meets customer needs perfectly
has little value unless the customer can actually use it. Until your software reaches the
people who need it, it has only potential value.

Delivering actual value means delivering real software. Unreleasable code has no value.

Working software is the primary measure of your progress. At every point, it should be
possible to stop the project and have actual value proportional to your investment in
producing the software.

Agility and flexibility are wonderful things, especially when combined with iterative

 Best of Study bestofstudy.com

incremental development. Throughput is important! Besides reducing thrashing and
waste, it provides much better feedback, and not just in terms of the code’s quality. Only
code that you can actually release to customers can provide real feedback on how well
you’re providing value to your customers.

In Practice

The most important practice is that of “done done,” where work is either complete or
incomplete. This unambiguous measure of progress immediately lets you know where
you stand.

Test-driven development produces a safety net that catches regressions and deviations
from customer requirements. A well-written test suite can quickly identify any failures
that may reduce the value of the software.

Similarly, continuous integration ensures that the project works as a whole multiple
times per day. It forces any mistakes or accidents to appear soon after their
introduction, when they’re easiest to fix.

Beyond Practices

I was once on a project that had been running for four months and was only a few
weeks away from its deadline when it was abruptly halted. “We’re way over budget and
didn’t realize it,” the manager told me. “Everybody has to go home tomorrow.”

We were all contractors, but the suddeness of the project’s cancellation surprised us. I
stayed on for one more week to train one of the organization’s employees—“Joe”—just
in case they had the opportunity to pick up the code again in the future.

Although this wasn’t an XP project, we had been working in iterations. We hadn’t
deployed any of the iteration releases, but the last iteration’s result was ready to deploy.

Joe and I did so, then spent the rest of the week fixing some known bugs. This might
have been a textbook example of good project management, except for one problem:
our release wasn’t usable. We had worked on features in priority order, but our
customers gave us the wrong priorities! A feature they had described as least important
for the first release was in fact vitally important: security. That feature was last on our
list, so we hadn’t implemented it. If we had deployed our interim releases, we would
have discovered the problem. Instead, it blindsided us and left the company without
anything of value.

Fortunately, the company brought us back a few months later and we finished the
application.

 Best of Study bestofstudy.com

Deliver Business Results

Someday that may happen to you. It may not be as dramatic as telling a recurring

customer that he’ll get better results if you don’t write software, but you may have to

choose between
delivering code and delivering business results.

Value isn’t really about software, after all. Your goal is to deliver something useful for
the customer. The software is merely how you do that. The single most essential
criterion for your success is the fitness of the project for its business purposes.

For example, agile teams value working software over comprehensive documentation.

Documentation is valuable—communicating what the software must do and how it

works is important—but your first priority is to meet your customer’s needs.

The primary goal is always to provide the most valuable business results possible.

In Practice

XP encourages close involvement with actual customers by bringing them into the team,
so they can measure progress and make decisions based on business value every day.

Real customer involvement allows the on-site customer to review these values with
end-users and keep the plan on track. Their vision provides answers to the questions
most important to the project.

XP approaches its schedule in terms of customer value. The team works on stories
phrased from the customer’s point of view and verifiable by customer testing. After
each iteration, the iteration demo shows the team’s current progress to stakeholders,
allowing them to verify that the results are valuable and to decide whether to continue
development.

Beyond Practices

A friend—“Aaron”—recently spent a man-month writing 1,500 lines of prototype code

that generated $7.8 million in revenue during its first demo.

As a graduate student, he interned with a technology company doing research on
handwriting recognition with digital pens containing sensors and recording equipment.
A customer made an off-hand remark about how useful it might be to use those special
pens with printed maps.

Suddenly, Aaron had a research assignment.

The largest potential customer used an existing software package to send map data to
field agents to plan routes and identify waypoints. Aaron modified the pen software to

 Best of Study bestofstudy.com

send coordinate information on printed pages. Then he found a way to encode the pen’s

necessary calibration data on color laser printouts. The final step was to use the API of

the customer’s software to enter special pen events—mark waypoint, identify route, etc.

In effect, all of his code merely replaced the clunky mouse-based UI with the act of
drawing on a custom-printed map, then docking the pen.

A few minutes into the first demo, the customer led the sales rep to the control room for
a field exercise. After installing the software and connecting the pen’s dock, the rep
handed the pen and a printed map to one of the techs. The tech had never seen the
product before and had no training, but he immediately circled an objective on the map
and docked the pen. In seconds, the objective appeared on the vehicle displays as well
as on the PDAs of the field agents.

The customer placed an order for a license and hardware for everyone at the location.
That’s business results.

Deliver Frequently

If you have a business problem, a solution to that problem today is much more valuable

than a solution to that problem in six months—especially if the solution will be the

same then as it is now.

Value is more than just doing what the customer needs. It’s doing what the customer
needs when the customer needs it.

Delivering working, valuable software frequently makes your software more valuable.
This is especially true when a real customer promotes the most valuable stories to the
start of the project. Delivering working software as fast as possible enables two
important feedback loops.

One is from actual customers to the developers, where the customers use the software
and communicate how well it meets their needs. The other is from the team to the
customers, where the team communicates by demonstrating how trustworthy and
capable it is.

The highest priority of any software project is to deliver value, frequently and
continuously, and by doing so, to satisfy the customer. Success follows.

In Practice

Once you’ve identified what the customer really needs and what makes the software
valuable, XP’s technical practices help you achieve fast and frequent releases. Short
iterations keep the schedule light and manageable by dividing the whole project into
week-long cycles.

 Best of Study bestofstudy.com

Beyond Practices

According to founder Cal Henderson,* the photo-sharing web site Flickr has practiced
frequent delivery from its earliest days. There was no single decision to do so; it was
just an extension of how its founders worked. Rather than batching up new features,
they released them to users as soon as possible.

The most important component of this process is a group of strong and responsible

developers who appreciate the chance to manage, code, test, stage, and deploy features.

The rest of the work is standard agility—working in small cycles, rigorous testing, fixing

bugs immediately, and taking many small risks.

The results are powerful. When a user posts a bug to the forum, the team can often fix
the problem and deploy the new code to the live site within minutes. There’s no need to
wait for other people to finish a new feature. It’s surprisingly low-risk, too.

Seek Technical Excellence

“What’s the intellectual basis for design? What does it mean to have a good design?”

Unfortunately, many discussions of “good” design focus on specific techniques. These
discussions often involve assumptions that one particular technology is better than
another, or that rich object-oriented domain models or stored procedures or service-
oriented architectures are obviously good.

Some folks describe good design as elegant or pretty. They say that it has the Quality
Without a Name (QWAN)—an ineffable sense of rightness in the design.

My QWAN is not your QWAN. My Truth and Beauty is your Falsehood and Defilement.
My beautiful domain models are uglier than your stored procedures, and vice versa.
QWAN is just too vague. I want a better definition of good design.

Software Doesn’t Exist

When you run a program, your computer loads a long series of magnetic fields from
your hard drive and translates them into capacitances in RAM. Transistors in the CPU
interpret those charges, sending the results out to peripherals such as your video card.

Yet none of that is software. Software isn’t even ones and zeros; it’s magnets, electricity,
and light. The only way to create software is to toggle electrical switches up and down—
or to use existing software to create it for you.

You write software, though, don’t you?

 Best of Study bestofstudy.com

Actually, you write a very detailed specification for a program that writes the software
for you.
This special program translates your specification into machine instructions, then
directs the computer’s operating system to save those instructions as magnetic fields on
the hard drive.

Once they’re there, you can run your program, copy it, share it, or whatever.

The specification is the source code. The program that translates the specification into
software is the compiler.

Design Is for Understanding

If source code is design, then what is design? Why do we bother with all these UML
diagrams and CRC cards and discussions around a whiteboard?

All these things are abstractions—even source code, so we create simplified models that
we can understand. Some of these models, like source code, are machine-translatable.
Others, like UML, are not.

Early source code was assembly language: a very thin abstraction over the hardware.
Programs were much simpler back then, but assembly language was hard to
understand.

Programmers drew flow charts to visualize the design. Why don’t we use flow charts
anymore? Our programming languages are so much more expressive that we don’t need
them! You can read a method and see the flow of control.

Before structured programming:

1000 NS% = (80 - LEN(T$)) / 2
1010 S$ = ""
1020 IF NS% = 0 GOTO 1060
1030 S$ = S$ + " "
1040 NS% = NS% - 1
1050 GOTO 1020
1060 PRINT S$ + T$
1070 RETURN

After structured programming:

public void PrintCenteredString(string text) {
int center = (LINE_LENGTH - text.Length) / 2;
string spaces = "";
for (int i = 0; i < center; i++) {
spaces += " ";
}

 Best of Study bestofstudy.com

Print(spaces + text);
}

Design Trade-offs

When the engineers at Boeing design a passenger airplane, they constantly have to
trade off safety, fuel efficiency, passenger capacity, and production cost. Programmers
rarely have to make those kinds of decisions these days.

The assembly programmers of yesteryear had tough decisions between using lots of
memory (space) or making the software fast (speed). Now, we almost never face such
speed/space trade-offs. Our machines are so fast and have so much RAM that once-
beloved hand optimizations rarely matter.

In fact, our computers are so fast that modern languages actually waste computing
resources.

With an optimizing compiler, C is just as good as assembly language. C++ adds virtual
method lookups—requiring more memory and an extra level of indirection. Java and C#
add a complete intermediate language that runs in a virtual machine atop the normal
machine.

Ruby* interprets the entire program on every invocation! How wasteful. So why is Ruby
on Rails so popular? How is it possible that Java and C# succeed?

What do they provide that makes their waste worthwhile? Why aren’t we all
programming in C?

Quality with a Name

A good airplane design balances the trade-offs of safety, carrying capacity, fuel
consumption, and manufacturing costs. A great airplane design gives you better safety,
and more people, for less fuel, at a cheaper price than the competition.

What about software? If we’re not balancing speed/space trade-offs, what are we doing?
Actually, there is one trade-off that we make over and over again. Java, C#, and Ruby
demonstrate that we are often willing to sacrifice computer time in order to save
programmer time and effort.

However, wasting cheap computer time to save programmer resources is a wise design
decision. Programmers are often the most expensive component in software
development.

If good design is the art of maximizing the benefits of our trade-offs—and if software
design’s only real trade-off is between machine performance and programmer time—
then the definition of “good software design” becomes crystal clear:

 Best of Study bestofstudy.com

A good software design minimizes the time required to create, modify, and
maintain the software while achieving acceptable runtime performance.

Great Design

1. Design quality is people-sensitive. Programmers, even those of equivalent
competence, have varying levels of expertise. A design that design quality relies
so heavily on programmer time, it’s very sensitive to which programmers are
doing the work. A good design takes this into account.

2. Design quality is change-specific. Software is often designed to be easy to

change in specific ways. This can make other changes difficult. A design that’s
good for some changes may be bad in others. A genuinely good design correctly
anticipates the changes that actually occur.

3. Modification and maintenance time are more important than creation time.
It bears repeating that most software spends far more time in maintenance than in
initial development. When you consider that even unreleased software often
requires modifications to its design. A good design focuses on minimizing
modification and maintenance time over minimizing creation time.

4. Design quality is unpredictable. If a good design minimizes programmer time,

and it varies depending on the people doing the work and the changes required,
then there’s no way to predict the quality of a design. You can have an informed
opinion, but ultimately the proof of a good design is in how it deals with change.

Furthermore, great designs:

• Are easy to modify by the people who most frequently work within them

• Easily support unexpected changes

• Are easy to maintain

• Prove their value by becoming steadily easier to modify over years of changes and

upgrades

Universal Design Principles

Universal principles—apply to any programming language or platform—that point the

way.

The Source Code Is the (Final) Design

 Best of Study bestofstudy.com

Any design that you can’t turn into software automatically is incomplete. If you’re an
architect or designer and you don’t produce code, it’s programmers who finish your
design for you. They’ll fill in the inevitable gaps, and they’ll encounter and solve
problems you didn’t anticipate. Follow your design down to the code.

Don’t Repeat Yourself (DRY)

Don’t Repeat Yourself is more than just avoiding cut-and-paste coding. It’s having one
cohesive location and canonical representation for every concept in the final design.

Eliminating duplication decreases the time required to make changes. You need only
change one part of the code. It also decreases the risk of introducing a defect by making
a necessary change in one place but not in another.

Be Cohesive

A cohesive design places closely related concepts closer together. A classic example is
the concept of a date and an operation to determine the next business day. This is a
well-known benefit of object-oriented programming: in OOP, you can group data and
related operations into the same class.

You can improve cohesion by grouping related files into a single directory, or by putting
documentation closer to the parts of the design it documents.
Cohesion improves design quality because it makes designs easier to understand.

Decouple

Different parts of a design are coupled when a change to one part of the design
necessitates a change to another part.

Problems occur when a change to one part of the design requires a change to an
unrelated part of the design. Either programmers spend extra time finding out these
changes, or they miss them entirely and introduce defects. The more tenuous the
relationship between two concepts, the more loosely coupled they should be.

Clarify, Simplify, and Refine

If good designs are easy for other people to modify and maintain, then one way to create
a good design is to create one that’s easy to read.

When I write code, I write it for the future. I assume that people I’ll never meet will read
and judge my design. As a result, I spend a lot of time making my code very easy to
understand.

Fail Fast

A design that fails fast reveals its flaws quickly. One way to do this is to have a
sophisticated test suite as part of the design, as with test-driven development. Another

 Best of Study bestofstudy.com

approach is use a tool such as assertions to check for inappropriate results and fail if
they occur.

Failing fast improves design by making errors visible more quickly, when it’s cheaper to
fix them.
Optimize from Measurements

Optimized code is often unreadable; it’s usually tricky and prone to defects. If good
design means reducing programmer time, then optimization is the exact opposite of
good design.

Although well-designed code is often fast code, it isn’t always fast. Optimization is
sometimes necessary. Optimizing later allows you to do it in the smartest way possible:
when you’ve refined the code, when it’s cheapest to modify, and when performance
profiling can help direct your optimization effort to the most effective improvements.

Eliminate Technical Debt

Despite our best intentions, technical debt creeps into our systems. removing technical
debt, a team can overcome any number of poor design decisions.

Principles in Practice

These universal design principles provide good guidance, but they don’t help with
specific languages or platforms. That’s why you need design principles for specific
languages.

Consider the simple and popular “instance variables must be private” design rule. As

one of the most widely repeated design rules, it often gets applied without real thought.

It’s true that instance variables should often be private, but if you want to understand
the rule and when to break it, ask why. Why make instance variables private? One
reason is that private variables enforce encapsulation. But why should anyone care
about encapsulation?

The real reason private variables (and encapsulation) are good is that they help enforce

decoupling. Decoupled code is good, right? Not always. Appropriately decoupled code is

good, but it’s OK for closely related concepts to be tightly coupled.

However, closely related concepts should also be cohesive. They should be close
together in the code. In object-oriented programming languages, closely related
concepts often belong in the same class.

 Best of Study bestofstudy.com

Pursue Mastery

A good software design minimizes the time required to create, modify, and maintain the
software while achieving acceptable runtime performance.

The same is true of agile software development. Ultimately, what matters is success,
however you define it. The practices, principles, and values are merely guides along the
way.

Start by following the practices rigorously. Learn what the principles mean. Break the
rules, experiment, see what works, and learn some more. Share your insights and
passion, and learn even more.

Over time, with discipline and success, even the principles will seem less important.
When doing the right thing is instinct and intuition, finely honed by experience, it’s time
to leave rules and principles behind. When you produce great software for a valuable
purpose and pass your wisdom on to the next generation of projects, you will have
mastered the art of successful software development.

	Deliver Value
	Exploit Your Agility
	In Practice
	Beyond Practices

	Only Releasable Code Has Value
	In Practice
	Beyond Practices

	Deliver Business Results
	In Practice
	Beyond Practices

	Deliver Frequently
	In Practice
	Beyond Practices

	Seek Technical Excellence
	Software Doesn’t Exist
	Design Is for Understanding
	Before structured programming:
	After structured programming:

	Design Trade-offs
	Quality with a Name
	Great Design
	Furthermore, great designs:

	Universal Design Principles
	The Source Code Is the (Final) Design
	Don’t Repeat Yourself (DRY)
	Be Cohesive
	Decouple
	Clarify, Simplify, and Refine
	Fail Fast
	Optimize from Measurements
	Eliminate Technical Debt

	Principles in Practice
	Pursue Mastery

