Best of Stlldy bestofstudy.com

Agile Technologies

Module-5

Deliver Value: Exploit Your Agility, Only Releasable Code Has Value
Results, Deliver Frequently, Seek Technical Excellence: Software Dgg
[s for Understanding, Design Trade-offs, Quality with a Name, Grea

Design Principles, Principles in Practice, Pursue Mastery

Best of Stu dy bestofstudy.com

Deliver Value

Your software only begins to have real value when it reaches users. Only at that point do
you start to generate trust, to get the most important kinds of feedback, and to
demonstrate a useful return on investment. That’s why successful agile projects deliver
value early, often, and repeatedly.

Exploit Your Agility
Simplicity of code and process are aesthetically pleasing. Yet there’s a more important

reason why agility helps you create great software: it improves your ability to
and take advantage of new opportunities.

You may discover a brilliant new technique that simplifies your co
may develop a new business practice that saves time and money.

Want to deliver real value? Delivering value to your custom
job. Aggressively pursuing feedback from your customer, fi
team members, and from your code itself as early and as
continue to learn and improve your understandi
opportunities as they appear.

, from other
sible allows you to
also reveals new

small initial investment of

Agility requires you to work in small step
i uantifiable value immediately.

time and resources, properly appliedgbegin
As well, committing to small amou s change itself more possible.

Aggressively seeking feedback
investment of resources until t 3 sible moment.

In Practice

g the time between taking an action and observing its
s your ability to learn from this feedback. This is especially

real customers in the process with frequent deliveries of the actual software
ates its current value to them.

Thepshort work unit of iterations and frequent demos and releases create a reliable
rhythm to make measured process adjustments.

Best of Stu dy bestofstudy.com

Beyond Practices

[worked for a small startup whose major product was an inventory management
system targeted at a specific retail industry. We had the top retailers and manufacturers
lined up to buy our project. We were months away from delivery when our biggest
customer ran into a problem: the license for their existing point-of-sale system suddenly
expired.

The software included a call-home system that checked with the vendor before starting.
Our plans included developing our own POS system, but that was at least several
months away.

Our current system managed inventory, but we hadn’t done specificgresearch on
supporting various terminal types, credit card scanners, and recei i

This was our largest customer, and without its business, we’d neve

After discussing our options and the project’s requireme
decided that we could build just enough of the POS syst
could switch to our software and avoid a $30,000 p

stomer, we
six weeks that they
vendor.

We shifted two-thirds of our development t
from an open source project we’d found eaflier, we ende

S project. Though we started
ustomizing it heavily.

iteration on a new machine we
ly after that. Though it was hard
ased on the way our customer did business.

After two weeks of development, elivered the fir
had built for the customer to test.

work, we gradually added new featu

ge a few lines in the GUI configuration to
saved our customer plenty of money, and we

Finally, the only remaining tag
match the customer’s store d
saved our account.

Only Releasabl e Has Value

Having the be autiful code in the world matters very little unless it does what
the customes, wants. [t}§ also true that having code that meets customer needs perfectly
has littl he customer can actually use it. Until your software reaches the

needlit, it has only potential value.

V ii g software is the primary measure of your progress. At every point, it should be
possible to stop the project and have actual value proportional to your investment in
producing the software.

g actual value means delivering real software. Unreleasable code has no value.

Agility and flexibility are wonderful things, especially when combined with iterative

Best of Stu dy bestofstudy.com

incremental development. Throughput is important! Besides reducing thrashing and
waste, it provides much better feedback, and not just in terms of the code’s quality. Only
code that you can actually release to customers can provide real feedback on how well
you're providing value to your customers.

In Practice
The most important practice is that of “done done,” where work is either complete or

incomplete. This unambiguous measure of progress immediately lets you know where
you stand.

Test-driven development produces a safety net that catches regressions and
from customer requirements. A well-written test suite can quickly,identi
that may reduce the value of the software.

Similarly, continuous integration ensures that the project worksfa
times per day. It forces any mistakes or accidents to appe
introduction, when they’re easiest to fix.

Beyond Practices
[was once on a project that had been ru months and was only a few

weeks away from its deadline when it wasf@bruptly haltedw#We're way over budget and
didn’t realize it,” the manager told me, “Eve 0 go home tomorrow.”

We were all contractors, but the s ess of t ject’s cancellation surprised us. |
stayed on for one more week to trai e of the organization’s employees—*“Joe”—just
in case they had the opportunity to pic the code again in the future.

Although this wasn’tan XP p
deployed any of the iteration ré

e had been working in iterations. We hadn’t
t the last iteration’s result was ready to deploy.

Joe and I did so, th
have been a tex

ent the rest of the week fixing some known bugs. This might
of good project management, except for one problem:
e had worked on features in priority order, but our
rong priorities! A feature they had described as least important
in fact vitally important: security. That feature was last on our

Best of Stu dy bestofstudy.com

Deliver Business Results

Someday that may happen to you. It may not be as dramatic as telling a recurring
customer that he'll get better results if you don't write software, but you may have to

choose between
delivering code and delivering business results.

Value isn’t really about software, after all. Your goal is to deliver something useful for
the customer. The software is merely how you do that. The single most essential
criterion for your success is the fitness of the project for its business purposes.

For example, agile teams value working software over comprehensive documentation.
Documentation is valuable—communicating what the software

works is important—but your first priority is to meet your custome

The primary goal is always to provide the most valuable busin

In Practice

by bri g them into the team,
bilsiness value every day.

XP encourages close involvement with actua
so they can measure progress and make degisions base

e on-site customer to review these values with
ovides answers to the questions

Real customer involvement allow
end-users and keep the plan on track. Their vision
most important to the project.

omer value. The team works on stories
and verifiable by customer testing. After
s the team’s current progress to stakeholders,
s are valuable and to decide whether to continue

XP approaches its schedule i
phrased from the customer’
each iteration, the iteration d
allowing them to verifygthat the
development.

Beyond Practi

A friend on"—re€ently spent a man-month writing 1,500 lines of prototype code
illion in revenue during its first demo.

ad student, he interned with a technology company doing research on
ng recognition with digital pens containing sensors and recording equipment.

Suddenly, Aaron had a research assignment.

The largest potential customer used an existing software package to send map data to
field agents to plan routes and identify waypoints. Aaron modified the pen software to

Best of Stu dy bestofstudy.com

send coordinate information on printed pages. Then he found a way to encode the pen’s
necessary calibration data on color laser printouts. The final step was to use the API of

the customer’s software to enter special pen events—mark waypoint, identify route, etc.

In effect, all of his code merely replaced the clunky mouse-based Ul with the act of
drawing on a custom-printed map, then docking the pen.

A few minutes into the first demo, the customer led the sales rep to the control room for
a field exercise. After installing the software and connecting the pen’s dock, the rep
handed the pen and a printed map to one of the techs. The tech had never seen the
product before and had no training, but he immediately circled an objective opgthe map

as on the PDAs of the field agents.

The customer placed an order for a license and hardware for ever;
That’s business results.

Deliver Frequently

If you have a business problem, a solution t p m to s much more valuable

than a solution to that problem in six m the solution will be the

same then as it is now.

Value is more than just doing wha ustomer
needs when the customer needs it.

s. It's doing what the customer

2 freqitently makes your software more valuable.
pmer promotes the most valuable stories to the
ng software as fast as possible enables two

Delivering working, valuable s
This is especially true when a
start of the project. Delivering
important feedbac S.

One is from act us rsito the developers, where the customers use the software
and communic¢ate well it meets their needs. The other is from the team to the
customers, wh
capable j

eam communicates by demonstrating how trustworthy and

rig¥ity of any software project is to deliver value, frequently and
,yand by doing so, to satisfy the customer. Success follows.

Once you've identified what the customer really needs and what makes the software
valuable, XP’s technical practices help you achieve fast and frequent releases. Short
iterations keep the schedule light and manageable by dividing the whole project into
week-long cycles.

Best of Stu dy bestofstudy.com

Beyond Practices

According to founder Cal Henderson,* the photo-sharing web site Flickr has practiced
frequent delivery from its earliest days. There was no single decision to do so; it was
just an extension of how its founders worked. Rather than batching up new features,
they released them to users as soon as possible.

The most important component of this process is a group of strong and responsible
developers who appreciate the chance to manage, code, test, stage, and deploy features.

The rest of the work is standard agility—working in small cycles, rigorous testing, fixing
bugs immediately, and taking many small risks.

The results are powerful. When a user posts a bug to the forum,
the problem and deploy the new code to the live site within minutes
wait for other people to finish a new feature. It's surprisingly low-rij

Seek Technical Excellence

“What’s the intellectual basis for design? Wha a good design?”

Unfortunately, many discussions of “goo
discussions often involve assumpti

pecific techniques. These
icular technology is better than

Some folks describe good design.as elegamt or pretty. They say that it has the Quality

Without a Name (QWAN)—an “
My QWAN is not your QWAN.

and Beauty is your Falsehood and Defilement.

My beautiful dom odels are Uglier than your stored procedures, and vice versa.
QWAN is just too v [want a better definition of good design.
Software Doesn tExi

When y.

a am, your computer loads a long series of magnetic fields from
ive @nd translates them into capacitances in RAM. Transistors in the CPU
arges, sending the results out to peripherals such as your video card.

e of that is software. Software isn’t even ones and zeros; it's magnets, electricity,
it. The only way to create software is to toggle electrical switches up and down—

or t@uise existing software to create it for you.

You write software, though, don’t you?

Best of Stu dy bestofstudy.com

Actually, you write a very detailed specification for a program that writes the software
for you.

This special program translates your specification into machine instructions, then
directs the computer’s operating system to save those instructions as magnetic fields on
the hard drive.

Once they’re there, you can run your program, copy it, share it, or whatever.

The specification is the source code. The program that translates the specification into
software is the compiler.

Design Is for Understanding

If source code is design, then what is design? Why do we bother UML

diagrams and CRC cards and discussions around a whiteboard?

Others, like UML, are not.

Early source code was assembly language:
Programs were much simpler back th
understand.

Programmers drew flow charts to
anymore? OQur programming langu
them! You can read a method and se

Before structured program Q
1000 NS% = (80 - LEN(T$)) / 2

. Why don’t we use flow charts
ore expressive that we don’t need
flow of control.

1010 S$=""

1020 IFNS% =0 G 060
1030 S$=S$ +

1040 NS% = N8§% -

1050 GOTQ,10

1060 P +T

070 R
ctured programming:

0id PrintCenteredString(string text) {
ter = (LINE_LENGTH - text.Length) / 2;

string spaces = "";
for (inti=0;i< center; i++) {

spaces +="";

}

Best of Stu dy bestofstudy.com

Print(spaces + text);

}
Design Trade-offs

When the engineers at Boeing design a passenger airplane, they constantly have to
trade off safety, fuel efficiency, passenger capacity, and production cost. Programmers
rarely have to make those kinds of decisions these days.

The assembly programmers of yesteryear had tough decisions between using lots of
memory (space) or making the software fast (speed). Now, we almost never face such
speed/space trade-offs. Our machines are so fast and have so much RAM that once-
beloved hand optimizations rarely matter.

In fact, our computers are so fast that modern languages actu?a
resources.

machine.

Ruby* interprets the entire program on ev
on Rails so popular? How is it possible tha

What do they provide that makeg their waste wor
programming in C?

hile? Why aren’t we all

Quality with a Name

A good airplane
consumption, and
and more people, fo

bala e trade-offs of safety, carrying capacity, fuel
facturing costs. A great airplane design gives you better safety,
fuel, at a cheaper price than the competition.

re often willing to sacrifice computer time in order to save
and effort.

wasting cheap computer time to save programmer resources is a wise design
Programmers are often the most expensive component in software
ent.

If good design is the art of maximizing the benefits of our trade-offs—and if software
design’s only real trade-off is between machine performance and programmer time—
then the definition of “good software design” becomes crystal clear:

Best of Stu dy bestofstudy.com

A good software design minimizes the time required to create, modify, and
maintain the software while achieving acceptable runtime performance.

Great Design

1. Design quality is people-sensitive. Programmers, even those of equivalent
competence, have varying levels of expertise. A design that design quality relies
so heavily on programmer time, it's very sensitive to which programmers are
doing the work. A good design takes this into account.

2. Design quality is change-specific. Software is often designed to be easy to
change in specific ways. This can make other changes difficult. A desjgn that’s
good for some changes may be bad in others. A genuinely good desigfi €orrectly
anticipates the changes that actually occur.

3. Modification and maintenance time are more important
It bears repeating that most software spends far more time i : gance than in
Software often
requires modifications to its design. A good on minimizing
modification and maintenance time over minimizi

4. Design quality is unpredictable. mifimizes programmer time,
and it varies depending on the peo i and the changes required,
then there’s no way to predi sign. You can have an informed
opinion, but ultimately the isin how it deals with change.

Furthermore, great designs:

* Are easy to modify by the pe

. | 5
* Easily support unexpected ch

* Are easy to maint

oSt frequently work within them

* Prove their vé@llue by b ing steadily easier to modify over years of changes and

upgrades

al Design Principles

Un al principles—apply to any programming language or platform—that point the
way.

The Source Code Is the (Final) Design

Best of Stu dy bestofstudy.com

Any design that you can’t turn into software automatically is incomplete. If you're an
architect or designer and you don’t produce code, it's programmers who finish your
design for you. They’ll fill in the inevitable gaps, and they’ll encounter and solve
problems you didn’t anticipate. Follow your design down to the code.

Don’t Repeat Yourself (DRY)

Don’t Repeat Yourself is more than just avoiding cut-and-paste coding. It's having one
cohesive location and canonical representation for every concept in the final design.

Eliminating duplication decreases the time required to make changes. You need only
change one part of the code. It also decreases the risk of introducing a defect
a necessary change in one place but not in another.

Be Cohesive

A cohesive design places closely related concepts closer together{A
the concept of a date and an operation to determine the bu
well-known benefit of object-oriented programming: in QOP,
related operations into the same class.

can group data and

You can improve cohesion by grouping rel
documentation closer to the parts of the design it docum
Cohesion improves design quality because 1 igns easier to understand.

single directory, or by putting

Decouple

Different parts of a design are_coup when a change to one part of the design

necessitates a change to anothg

Problems occur when a chang e part of the design requires a change to an
unrelated part of sign. Either programmers spend extra time finding out these
changes, or they them entirely and introduce defects. The more tenuous the
relationship betwien t onkepts, the more loosely coupled they should be.

Clarify, Simpl efine

s age €asy for other people to modify and maintain, then one way to create
ni create one that’s easy to read.

rite code, [write it for the future. [assume that people I'll never meet will read

Fail Fast

A design that fails fast reveals its flaws quickly. One way to do this is to have a
sophisticated test suite as part of the design, as with test-driven development. Another

Best of Stu dy bestofstudy.com

approach is use a tool such as assertions to check for inappropriate results and fail if
they occur.

Failing fast improves design by making errors visible more quickly, when it's cheaper to
fix them.
Optimize from Measurements

Optimized code is often unreadable; it’s usually tricky and prone to defects. If good
design means reducing programmer time, then optimization is the exact opposite of
good design.

Although well-designed code is often fast code, it isn’t always fast. Opti
sometimes necessary. Optimizing later allows you to do it in the smartest way
when you’ve refined the code, when it's cheapest to modify, a
profiling can help direct your optimization effort to the most effectiv

Eliminate Technical Debt

Despite our best intentions, technical debt creeps into o
debt, a team can overcome any number of poor design

Principles in Practice

These universal design principles ide good guidance, but they don’t help with
specific languages or platfor t's you need design principles for specific
languages.

Consider the simp

popula ance variables must be private” design rule. As
one of the most wid epeated design rules, it often gets applied without real thought.

It's true that i
the rule and

es should often be private, but if you want to understand
reak it, ask why. Why make instance variables private? One
ariables enforce encapsulation. But why should anyone care

ason private variables (and encapsulation) are good is that they help enforce
g. Decoupled code is good, right? Not always. Appropriately decoupled code is

it's OK for closely related concepts to be tightly coupled.

However, closely related concepts should also be cohesive. They should be close
together in the code. In object-oriented programming languages, closely related
concepts often belong in the same class.

Best of Stlldy bestofstudy.com

Pursue Mastery

A good software design minimizes the time required to create, modify, and maintain the
software while achieving acceptable runtime performance.

The same is true of agile software development. Ultimately, what matters is\§uccess,
way.

Start by following the practices rigorously. Learn what the princi
rules, experiment, see what works, and learn some more.
passion, and learn even more.

m less important.

Over time, with discipline and success, even the
i experience, it’s time

When doing the right thing is instinct and in on,

purpose and pass your wisdom on to th of projects, you will have
mastered the art of successful so

	Deliver Value
	Exploit Your Agility
	In Practice
	Beyond Practices

	Only Releasable Code Has Value
	In Practice
	Beyond Practices

	Deliver Business Results
	In Practice
	Beyond Practices

	Deliver Frequently
	In Practice
	Beyond Practices

	Seek Technical Excellence
	Software Doesn’t Exist
	Design Is for Understanding
	Before structured programming:
	After structured programming:

	Design Trade-offs
	Quality with a Name
	Great Design
	Furthermore, great designs:

	Universal Design Principles
	The Source Code Is the (Final) Design
	Don’t Repeat Yourself (DRY)
	Be Cohesive
	Decouple
	Clarify, Simplify, and Refine
	Fail Fast
	Optimize from Measurements
	Eliminate Technical Debt

	Principles in Practice
	Pursue Mastery

