
 Best of Study bestofstudy.com

Agile Technologies

Module 4

Mastering Agility : Values and Principles: Commonalities, About Values, Principles, and

Practices ,Further Reading, Improve the Process: Understand Your Project, Tune and

Adapt, Break the Rules, Relyon People :Build Effective Relationships, Let the Right

People Do the Right Things, Build the Process for the People, Eliminate Waste :Work in

Small, Reversible Steps, Fail Fast, Maximize Work Not Done, Pursue Throughput

 Best of Study bestofstudy.com
Values and Principles

To master the art of agile development, you need experience and mindfulness.
Experience helps you see how agile methods work. Mindfulness helps you understand
your experiences.

Experience and mindfulness are the path to mastery.

Commonalities

Can any set of principles really represent agile development?

The answer is yes: agile methods do share common values and principles.

Five themes: Improve the Process, Rely on People, Eliminate Waste, Deliver Value, and
Seek Technical Excellence.

About Values, Principles, and Practices

XP’s values are:

Courage
To make the right decisions, even when they’re difficult, and to tell stakeholders the
truth when they need to hear it.

Communication
To give the right people the right information when they can use it to its maximum
advantage.

Simplicity
To discard the things we want but don’t actually need.

Feedback
To learn the appropriate lessons at every possible opportunity.

Respect
To treat ourselves and others with dignity, and to acknowledge expertise and our
mutual desire for success.

Principles are applications of those ideals to an industry. For example, the value of
simplicity leads us to focus on the essentials of development.

“Excess methodology weight is costly,” and “Discipline, skills, and understanding
counter process, formality, and documentation.”

 Best of Study bestofstudy.com
Practices are principles applied to a specific type of project. XP’s practices, for example,
call for colocated teams of up to 20 people. “Sit Together”” and “The Whole Team”
embody the principles of simplicity because face-to-face communication reduces the
need for formal requirements documentation.

Improve the Process

Agile methods are more than a list of practices to follow. When your team has learned
how to perform them effectively, you can become a great team by using the practices to
modify your process.

As you master the art of agile development, you’ll learn how and when to modify your
process to take advantage of your specific situation and opportunities.

Understand Your Project

To improve your process, you must understand how it affects your project. You need to

take advantage of feedback—from the code, from the team, from customers and

stakeholders—so you can understand what works well and what doesn’t.

Always pay attention to what’s happening around you. Ask “why”: why do we follow

this practice? Why is this practice working? Why isn’t this practice working?

Ask team members for their thoughts. There’s an element of truth in every complaint, so
encourage open discussion. As a team, reflect on what you’ve learned. When you
discover something new, be a mentor; when you have questions, ask a mentor. Help

each other understand what you’re doing and why.

In Practice

XP is full of feedback loops of information that you should use to improve your work.

Root-cause analysis and retrospectives clearly improve the team’s understanding.

For example, sitting and working together as a whole team gives team members
opportunities to observe and absorb information.

When something unexpected happens. Stand-up meetings and the informative
workspace contribute to an information-rich environment.

The practices of energized work, slack, and pair programming also spread useful
information. When team members are under pressure, they have trouble thinking about
ways they can improve their work. Energized work reduce that pressure. Pair
programming gives one person in each pair time to think about strategy.

 Best of Study bestofstudy.com
Test-driven development, exploratory testing, real customer involvement, iteration
demos, and frequent releases all provide information about the project, from code to
user response.

Beyond Practices

Tying an important task to a single person is a mistake. To fix it, we all agreed to divide
the work. Every month, one of us takes final responsibility for creating the release; this
person produces the final tested bundle, makes the appropriate announcements, and
uploads the bundle to the master distribution site.

With six people available and a release schedule planned to the day, we’ve found a much

healthier rhythm for making regular releases. If one or more developers are

unavailable, several other people can perform the same function. It’s worked—we’ve

regained our velocity and started to attract new developers again.

Tune and Adapt

When you see the need for a change, modify your process. Make the change for your
team alone

These changes require tuning. Think of them as experiments; make small, isolated
changes that allow you to understand the results. Be specific about your expectations
and about the measurements for judging success.

These changes are sources of feedback and learning. Use the results of your
experiments to make further changes. Iterate until you’re satisfied with the results.

Team members need to be flexible and adaptive. Your team needs to have the courage
to experiment and occasionally fail.

In Practice

Tuning and adapting is implicit in XP; teams are supposed to make changes whenever
they have a reason to do so.

 Best of Study bestofstudy.com

Rely on People

Alistair Cockburn’s 1999 paper, “Characterizing people as non-linear, first-order

components in software development,” argues that the people involved in making

software affect the project as much as any method or practice.

Almost every challenge in building great software is, in some way, a people problem.

Agile methods put people and their interactions at the center of all decisions. How can
we best work together? How can we communicate effectively? Successful software
projects must address these questions.

Build Effective Relationships

Working relationships are built on honesty, trust, cooperation, openness, and mutual
respect.

You can’t force people to do this. The best your agile method can do is support these
sorts of relationships. For example, one way to engender healthy interaction is to have
people sit together and collaborate in pursuit of common goals.

Blame-oriented cultures also sabotage relationships. Get rid of blame by introducing
collaboration and avoiding practices that indicate a lack of trust. Rather than forcing
stakeholders to sign a requirements document, work together to identify and clarify
requirements and review progress iteratively. Rather than telling developers that they
can’t produce any bugs and testers that they must find all the bugs, ask developers and
testers to work together to ensure that customers don’t find any bugs.

Credit isn’t important. Being right isn’t important. Treating your team members with
respect and cooperating to produce great software is important.

In Practice

Everyday practices such as stand-up meetings, collective code ownership, ubiquitous
language, the planning game, and pair programming help reinforce the idea that team
members work together to achieve common goals.

Beyond Practices

XP recommends colocated teams for a reason: it’s much easier to communicate and
form solid working relationships when you’re all in the same room. Yet some teams
can’t or won’t sit together. How do you deal with this challenge?

Our team also instituted weekly meetings. They’re virtual meetings, but they help us

 Best of Study bestofstudy.com
understand what everyone is working on. The meetings contribute to our cohesiveness
and shared direction, and they help curtail unhelpful tangents.

Let the Right People Do the Right Things

A functioning team is not enough. You need to have the right people working well
together.

You need a diverse range of expertise. Once you find the right people, trust them to do
their jobs. Instead of creating a process that protects your organization from its
employees, create a process that enables team members to excel.

Trust them, and back up that trust by giving them authority over the project’s success. If
you can’t trust your team, you don’t have the right people. No one is perfect, but you
need a team that, as a whole, you can trust.

Within the team, anyone can be a leader. Encourage team members to turn to the
person or people most qualified to make a necessary decision. For example, when you
need design decisions, ask your senior programmers for help. When you need business
decisions, ask your most experienced businessperson to make the right choice.

Managers, rather than telling the team what to do, let the team tell you what they need
you to do to help them succeed.

In Practice

This principle has two parts: first, get the right people, then give them the power do
their work right. XP supports the first part by including customers and testers on the
team and involving real customers when appropriate.

XP supports the second part—giving team members the power to do their work right—

with many of its practices. XP has a coach, not a team lead, who helps, not directs, team

members.

Build the Process for the People

Agile methods recognize the humanity at the core of software development. Agile
methods are built around people, not machines.

One aspect of humanity is that we’re fallible. We make mistakes, forget important
practices, and refuse to do things that are good for us—especially when we’re tired or
under stress.

We have strengths, too. We are creative, playful, and—under the right circumstances—
passionate and driven to succeed. No machine can match these characteristics.

 Best of Study bestofstudy.com
As you modify your agile method, work with these essential strengths and weaknesses.
Don’t require perfection; instead, build your process to identify and fix mistakes quickly.
If a task is boring and repetitive, automate it. Have fun, too.

In Practice

XP’s demand for self-discipline seems to violate this principle of understanding human
weakness. People aren’t good at being self-disciplined all the time, so how can XP
succeed?

XP handles the challenge of self-discipline in several ways. First, software developers
love to produce high-quality work; once they see the quality of code that XP provides,
they tend to love it.

They may not always stay disciplined about the practices, but they generally want to
follow the practices.

Second, energized work and pair programming give developers the support they need
to be disciplined.

Pair programming provides positive peer pressure and additional support; if one
member of the pair feels like taking an ill-advised shortcut, the other often reins him in.

Finally, while XP requires that the team be generally disciplined, it doesn’t require
perfection.
If a pair makes a poor decision, collective code ownership means that another pair is

Beyond Practices

A friend—“Mel”—used to work for a small consulting company. The shop had three to
five developers and twice that many clients at any time, so it was common for them to
work on several projects during the week.

To simplify billing, the company used a custom time-tracking application that ran
constantly in Windows, requiring developers to enter different billing codes whenever
they changed tasks.

That single application was the only reason the developers needed to use Windows, as
they deployed almost exclusively to Linux-based platforms. The lack of access to native
tools occasionally caused problems. Regular task-switching—the reason for the time-
tracking application—was often a more serious problem among the developers than
minute-by-minute statistics.

Mel’s solution had two parts. First, he dedicated his mornings to small tasks such as
addressing bug reports or minor enhancements or customer requests. The minimum
billable unit was 15 minutes, which was just about enough time to get into a flow state
for any particular project.

 Best of Study bestofstudy.com
This left his afternoons (his most productive time) for longer tasks of two to four hours.
Very few customer requests needed immediate solutions, and most of the customers
were on the East Coast with a three-hour time difference; when he returned from lunch
at 1 p.m., his customers were preparing to leave for the day.
The second part of the solution was using index cards to record task times. This was
often faster than finding the right billing codes in the application. It also meant that Mel
could boot his computer into Linux and stay there, then enter his stats into the
application on another machine just before leaving for the day. The other developers
noticed Mel’s productivity increase, and he was only too happy to share his ideas. When
their manager realized that everyone had switched to a new system, the results were
inarguable. The developers were happier and more productive.

Eliminate Waste

Agility requires flexibility and a lean process, stripped to its essentials. Anything more is
wasteful. Eliminate it! The less you have to do, the less time your work will take, the less
it will cost, and the more quickly you will deliver.

You can’t just cut out practices, though. What’s really necessary? How can you tell if
something helps or hinders you? What actually gets good software to the people who
need it? Answering these questions helps you eliminate waste from your process and
increase your agility.

Work in Small, Reversible Steps

The easiest way to reduce waste is to reduce the amount of work you may have to throw
away.

This means breaking your work down into its smallest possible units and verifying them
separately.

Incremental change is a better approach. I make one well-reasoned change, observe and

verify its effects, and decide whether to commit to the change or revert it. I learn more

and come up with better—and cleaner—solutions.

This may sound like taking baby steps, and it is. Though I can work for 10 or 15 minutes
on a feature and get it mostly right, the quality of my code improves immensely when I
focus on a very small part and spend time perfecting that one tiny piece before
continuing.

In Practice

The desire to solve big, hairy problems is common in developers. Pair programming
helps us encourage each other to take small steps to avoid unnecessary embellishments.

 Best of Study bestofstudy.com
Further, the navigator concentrates on the big picture so that both developers can
maintain perspective of the system as a whole.

Test-driven development provides a natural rhythm with its think-test-design-code-
refactor cycle.
At a higher level, stories limit the total amount of work required for any one pairing
session.

The maximum size of a step cannot exceed a few days. As well, continuous integration
spreads working code throughout the whole team. The project makes continual, always-
releasable progress at a reliable pace.

Finally, refactoring enables incremental design. The design of the system proceeds in
small steps as needed. As developers add features, their understanding of the sufficient
and necessary design will evolve; refactoring allows them to refine the system to meet
its optimal current design.

Fail Fast

It may seem obvious, but failure is another source of waste. Unfortunately, the only way
to avoid failure entirely is to avoid doing anything worthwhile.

Instead of trying to avoid failure, embrace it. Think, “If this project is sure to fail, I want

to know that as soon as possible.” Look for ways to gather information that will tell you

about the project’s likelihood of failure. Conduct experiments on risk-prone areas to see

if they fail in practice.

The sooner you can cancel a doomed project, the less time, effort, and money you’ll
waste on it.

Either way, invest only as much time and as many resources as you need to be sure of
your results.

With these principles guiding your decisions, you’ll fear failure less. If failure doesn’t
hurt, then it’s OK to fail.

In Practice

One of the challenges of adopting XP is that it tends to expose problems. For example,
iterations, velocity, and the planning game shine the harsh light of fact on your schedule
aspirations.

This is intentional: it’s one of the ways XP helps projects fail fast. If your desired
schedule is unachievable, you should know that. If the project is still worthwhile, either
reduce scope or change your schedule. Otherwise, cancel the project. This may seem

harsh, but it’s really just a reflection of the “fail fast” philosophy.

 Best of Study bestofstudy.com

Cancelling a project early isn’t a sign of failure in XP teams; it’s a success. The team
prevented a doomed project from wasting hundreds of thousands of dollars.

Beyond Practices

I once led a development team on a project with an “aggressive schedule.” Seasoned

developers recognize this phrase as a code for impending disaster. The schedule

implicitly required the team to sacrifice their lives in a misguided attempt to achieve the
unachievable.

I knew before I started that we had little chance of success. I accepted the job anyway,
knowing that we could at least fail fast. This was a mistake. I shouldn’t have assumed.
Because there were clear danger signs for the project, our first task was to gather more
information. We conducted three two-week iterations and created a release plan. Six
weeks after starting the project, we had a reliable release date. It showed us coming in
very late.

I thought this was good news—a textbook example of failing fast. We had performed an

experiment that confirmed our fears, so now it was time to take action: change the

scope of the project, change the date, or cancel the project. We had a golden opportunity
to take a potential failure and turn it into a success, either by adjusting our plan or
cutting our losses.

Unfortunately, I hadn’t done my homework. The organization wasn’t ready to accept the
possibility of failure. Rather than address the problem, management tried to force the
team to meet the original schedule. After realizing that management wouldn’t give us
the support we needed to succeed, I eventually resigned.

Maximize Work Not Done

The agile community has a saying: “Simplicity is the art of maximizing the work not

done.”

This idea is central to eliminating waste. To make your process more agile, do less.

Simplifying your process sometimes means sacrificing formal structures while
increasing rigor.

For example, an elegant mathematical proof sketched on the back of a napkin may be

rigorous, but it’s informal. Similarly, sitting with customers decreases the amount of

formal requirements documentation you create, but it substantially increases your
ability to understand requirements.

 Best of Study bestofstudy.com

Solutions come from feedback, communication, self-discipline, and trust

In Practice

By having teams sit together and communicate directly, XP eliminates the need for
intermediate requirements documents. By using close programmer collaboration and
incremental design.
XP also eliminates waste by reusing practices in multiple roles. The obvious benefit of
pair programming, for example, is continuous code review, but it also spreads
knowledge throughout the team, promotes self-discipline, and reduces distractions.
Collective code ownership not only enables incremental design and architecture, it
removes the time wasted while you wait for someone else to make a necessary API
change.

Beyond Practices

ISO 9001 certification is an essential competitive requirement for some organizations. I
helped one such organization develop control software for their high-end equipment.
This was the organization’s first XP project, so we had to figure out how to make ISO
9001 certification work with XP. Our challenge was to do so without the waste of
unnecessary documentation procedures.

Nobody on the team was an expert in ISO 9001, so we started by asking one of the

organization’s internal ISO 9001 auditors for help. (This was an example of the “Let the

Right People Do the Right Things” principle) From the auditor, we learned that ISO 9001

didn’t mandate any particular process; it just required that we had a process that
achieved certain goals, that we could prove we had such a process, and that we proved
we were following the process.

This gave us the flexibility we needed. To keep our process simple, we reused our
existing practices to meet our ISO 9001 rules. Rather than creating thick requirements
documents and test plans to demonstrate that we tested our product adequately, we
structured our existing customer testing practice to fill the need. In addition to
demonstrating conclusively that our software fulfilled its necessary functions, the
customer tests showed that we followed our own internal processes.

Pursue Throughput

A final source of waste unreleased software. It’s partially done work—work that has

cost money but has yet to deliver any value.

Partially done work also hurts throughput, which is the amount of time it takes for a
new idea to become useful software. Low throughput introduces more waste. The
longer it takes to develop an idea, the greater the likelihood that some change of plans
will invalidate some of the partially done work.

 Best of Study bestofstudy.com

To minimize partially done work and wasted effort, maximize your throughput

To maximize throughput, the constraint needs to work at maximum productivity.

In Practice

XP planning focuses on throughput and minimizing work in progress.

Every iteration takes an idea—a story—from concept to completion. Each story must be

“done done” by the end of the iteration.

XP’s emphasis on programmer productivity—often at the cost of other team members’

productivity—is another example of this principle. Although having customers sit with

the team full-time may not be the most efficient use of the customers’ time, it increases

programmer productivity.

Beyond Practices

Our project faced a tight schedule, so we tried to speed things up by adding more people
to the project. In the span of a month, we increased the team size from 7 programmers
o 14 programmers, then to 18 programmers. Most of the new programmers were
junior-level.

In this particular project, management ignored our protestations about adding people,
so we decided to give it our best effort. Rather than having everyone work at maximum
efficiency, we focused on maximizing throughput.

We started by increasing the size of the initial development team—the Core Team—

only
slightly, adding just one person. The remaining six developers formed the SWAT Team.

Their job was not to work on production software, but to remove roadblocks that
hindered the core development team. Every few weeks, we swapped one or two people
between the two teams to share knowledge.

This structure worked well for us. It was a legacy project, so there were a lot of
hindrances blocking development.

	Values and Principles
	Commonalities
	About Values, Principles, and Practices
	Courage
	Communication
	Simplicity
	Feedback

	Improve the Process
	Understand Your Project
	In Practice
	Beyond Practices

	Tune and Adapt
	In Practice

	Rely on People
	Build Effective Relationships
	In Practice
	Beyond Practices
	Let the Right People Do the Right Things
	In Practice (1)

	Build the Process for the People
	In Practice
	Beyond Practices

	Eliminate Waste
	Work in Small, Reversible Steps
	In Practice

	Fail Fast
	In Practice
	Beyond Practices

	Maximize Work Not Done
	In Practice
	Beyond Practices

	Pursue Throughput
	In Practice
	Beyond Practices

