Best of Study

Agile Technologies

Module-3

Practicing XP: Thinking: Pair Programi
Energized Work, Informative Workspace,Re
Analysis, Retrospectives,

&eal Customer

s Language, Stand-Up
rds, | '

Collaborating: Trust, Sit{o
Involvement, Ubiqui
Meetings, Coding Sta

¢§0
Q

Thinking
XP doesn’t require experts. It does require a habit of mindfulness. The following
contains five practices to help mindful developers excel:

e Pair programming doubles the brainpower available during coding, and gives one
person in each pair the opportunity to think about strategic, long-term issues.

» Energized work acknowledges that developers do their best, most productive work
when they’re energized and motivated.

* An informative workspace gives the whole team more opport
working well and what isn’t.

* Root-cause analysis is a useful tool for identifying the unde
problems.

» Retrospectives provide a way to analyze and impro e en evelopment
process.

Pair Programming

We help each other succeed.

Pair programming is one of the first th people notice about XP. Two people working
at the same keyboard? It’s wei Iso emely powerful and, once you get used to
it, tons of fun.

Why Pair?

When you pai des—the driver. The other person is the navigator, whose
job is to think. igator, sometimes you think about what the driver is typing.

ou think about what tasks to work on next and sometimes you think about
est fits into the overall design.

gement leaves the driver free to work on the tactical challenges of creating

the details of coding.

Together, the driver and navigator create higher-quality work more quickly than either
could produce on their own.

Pairing also reinforces good programming habits. XP’s reliance on continuous testing
and design refinement takes a lot of self-discipline.

When pairing, you'll have positive peer pressure to perform these difficult but crucial
tasks. You'll spread coding knowledge and tips throughout the team.

You'll also spend more time in flow—that highly productive state in which you're totally
focused on the code.

Your office mates are far less likely to interrupt you when you’re working with
someone. When they do, one person will handle the interruption whileshe other
continues his train of thought.

How to Pair

A good rule of thumb is to pair on anything that you need to mai
tests and the build script.

When you start working on a task, ask another ork with you. If

When you need a fresh perspective, switc e person stay on the task

and bring the new partner up to spe

Switch whenever a task is finishe
hours.

When you sit down to pair tog
your chairs side by side, allo
monitor is clearly visible. Wh

ach other’s personal space, and make sure the
driving, place the keyboard directly in front of

you. Keep an eye or this one—for some reason, people pairing tend to contort

themselves to rea eyboard and mouse rather than moving them closer.

Driving avigati

avemore time to think than drivers do. The situation will be reversed when

igating, expect to feel like you want to step in and take the keyboard away
r partner. Relax; your driver will often communicate an idea with both words

He’ll make typos and little mistakes—give him time to correct them himself. Use your
extra brainpower to think about the greater picture. What other tests do you need to

write? How does this code fit into the rest of the system? Is there duplication you need
to remove? Can the code be clearer? Can the overall design be better?

As navigator, help your driver be more productive. Think about what’s going to happen
next and be prepared with suggestions.

Rather than interrupting the driver when I think of an issue, write your ideas on the
index card and wait for a break in the action to bring them up. At the end of the pairing

session,

Pairing Stations

To enjoy pair programming, good pairing stations are essential. You nee nty of
room for both people to sit side by side.

The best ones are just simple folding tables found at any good office
should be six feet long, so that two people can sit comfortably side and at least

four feet deep. Each table needs a high-powered development work

Plug in two keyboards and mice so each person can have t. Splurge on large
monitors so that both people can see clearly.

Challenges

Pairing can be uncomfortable at first, as i e you to collaborate more than
you're used to. These feelings are fiatural and typically go away after a month or two,
but you have to face some challeng

§ ‘l’

your personal space needs and ask about your partner’s.

Comfort

Pairing is no fun if you're
position and equipment so yo
legs, feet, and knee

able. When you sit down to pair, adjust your
comfortably. Make sure there’s room for your

When you start air,

Similarly, whi oeSwithout saying that personal hygiene is critical, remember that
offee, garlic, onions, and spicy foods can lead to foul breath.

a collaboration between peers, but sometimes a senior developer will pair
nior developer. Rather than treating these occasions as student/teacher

Communication style

New drivers sometimes have difficulty involving their partners; they can take over the
keyboard and shut down communication. To practice communicating and switching
roles while pairing, consider ping-pong pairing. In this exercise, one person writes a
test. The other person makes it pass and writes a new test. Then the first person makes
it pass and repeats the process by writing another test.

Different people have different thresholds, so pay attention to how your partner
receives your comments.

Results

When interrupted, one person deals with the problem whil
working. Afterward, you slide back into the flow of work immediate
day, you feel tired yet satisfied.

The team as a whole enjoys higher quality code. Technical d
travels quickly through the team, raising everyone’s level

Contraindications

nment. Mos iCes and cubicles just aren’t
ogrammers to sit side by side

rogram.

Pairing requires a comfortable work envi
set up that way. If your workspace doe
comfortably, either change the worKspace or don’t pai

Similarly, if your team doesn't sit to r, pairing may not work for you. Although you

can pair remotely, it's not as go

Alternatives

ram, you need alternatives. Formal code inspections can reduce
nd support self-discipline.

If you cannot pair
defects, improve qu

If you're goin
mechanis

inspections in place of pairing, add some sort of support
help them take place.

pecti aloneé are unlikely to share knowledge as thoroughly as collective code
ershi ires. If you cannot pair program, consider avoiding collective
ip, at least at first.

Energized Work
XP’s practice of energized work recognizes that professionals can do good work under
difficult circumstances, they do their best, most productive work when they’re

energized and motivated.

How to Be Energized

One of the simplest ways to be energized is to take care of yourself. Go homélon time
every day. Spend time with family and friends and engage in activities that take your
mind off of work. Eat healthy foods, exercise, and get plenty of slee

While at work, give it your full attention. Turn off interruptions
instant messaging. Silence your phones. Ask your project manage
unnecessary meetings and organizational politics.

This isn’t easy. Energized work requires a supportive w lace ome life. It’s also
a personal choice; there’s no way to force someon energize

Supporting Energized Work

One of my favorite techniques as a i i eople to go home on time. Tired
people make mistakes and take sh@ktcuts. The resultifig errors can end up costing more
than the work is worth. This is pa en someone is sick; in addition to

oufrage energized work. It encourages focus like
day of pairing, you'll be tired but satisfied. It’s
your best: pairing with someone who'’s alert can

Pair programming is another
no other practice I know. Af
particularly useful whes you're
help you stay focus

Having healthyfood a e in the workplace is another good way to support
energized wor st really is the most important meal of the day

also makes a difference.

municating this vision is the product manager’s responsibility.

elplanning game addresses this issue by combining customer value with developer
estimates to create achievable plans.

Speaking of plans, every organization has some amount of politics. Sometimes, politics
lead to healthy negotiation and compromising. Other times, they lead to unreasonable
demands and blaming. The project manager should deal with these politics, letting the
team know what’s important and shielding them from what isn’t.

The project manager can also help team members do fulfilling work by pushing back
unnecessary meetings and conference calls.

In an environment with a lot of external distractions, consider setting aside core hours
each day—maybe just an hour or two to start—during which everyone agrees not to
interrupt the team.

Finally, jelled teams have a lot of energy. They’re a lot of fun, tog#Xou ecognize a
jelled team by how much its members enjoy spending time togeth hey unch
together, share in-jokes, and may even socialize outside of work.

Taking Breaks
When you make more mistakes than progress, it’s time t eab
After a break or a good night’s sleep, usual istake t away. Sometimes a

You can usually tell when somebod
computer, and abrupt movements

y concentration, cursing at the

Suggesting a break requires a certal ount of delicacy. If someone respects you as a
leader, then you might be able i
from the problem for a minutefs C r his head.
Try asking him to help ou for'e ent, or to take a short walk with you to discuss
some issue you're fagi

nt progress every week and feel able to maintain that progress

Results
When y@: enepgized, there’s a sense of excitement

Energized work is not an excuse to goof off. Generate trust by putting in a fair day’s
work.

Some organizations may make energized work difficult. If your organization uses the
number of hours worked as a yardstick to judge dedication, you may be better off
sacrificing energized work and working long hours. The choice between quality of life
and career advancement is a personal one that only you and your family can make.

Alternatives

If your organization makes energized work difficult, mistakes are more likely.

Pair programming can help tired programmers stay focused and catch eac
errors. Additional testing may be necessary to find the extra defects.

The extreme form of this sort of organization is the death mar
requires employees to work extensive overtime week after week.
projects are the norm, not the exception”.

Informative Workspace

Just as a pilot surrounds himself with infor
workspace with information necessary t
workspace.

sary to fly a plane, arrange your

steer you ject: create an informative

An informative workspace broadc
break, they will sometimes wander

An informative workspace alsgf2
walking into the room. It statlis information without interrupting team

members and helps improve s der trust.

Subtle Cues

The essence an in ive workspace is information. One simple source of
information is the room.

A healt ect is%eénergized. People work together, and make the occasional joke. It’s

or ried, but it's clearly productive. When a pair needs help, other pairs

e r assistance, and then return to their tasks. When a pair completes

g well, everyone celebrates for a moment.

althy project is quiet and tense. Team members don’t talk much, if at all.

People live by the clock, punching in and punching out—or worse, watching to see who
is the first one to dare to leave.

An informative workspace also provides ways for people to communicate. This usually
means plenty of whiteboards around the walls and stacks of index cards. A collaborative
design sketch on a whiteboard can often communicate an idea far more quickly

and effectively than a half-hour PowerPoint presentation.

Big Visible Charts
An essential aspect of an informative workspace is the big visible chart. The goal of a big
visible chart is to display information so simply and unambiguously that it

communicates even from across the room.

The iteration and release planning boards are ubiquitous examples of sucha cha

For examples, see the release planning board shown in below Figur
planning board shown in Figure 2.

Release plan
Newt re/lease Avs/ Zoleas For Followins release

F‘ﬂ'_{_vfe‘.l

glorie®

)_pa':.-(' one

~ar fuivre

Zteration 33

Done Donel’
STORZES TASKS il

& cwsfomer reviews/
ry fine~funing

® end—~fo-end sanidy
che

L
L] L] e L] :::/Ji/sz"
(/ olb migration)
s final customer approval
-
| (s#
°

H rawn Charts

Avoid the reflexive temptation to computerize your charts. The benefits of the
informative workspace stem from the information being constantly visible from
everywhere in the room. It's difficult and expensive for computerized charts to meet
that criterion; you’d have to install plasma screens or projectors everywhere.

Even if you can afford big screens everywhere, you will constantly change the types of
charts you display. This is easier with flip charts and whiteboards than with computers,
as creating or modifying a chart is as simple as drawing with pen and paper.

Process Improvement Charts

One type of big visible chart measures specific issues that the team wants to improve.

Unlike the planning boards or team calendar, which stay posted, post these charts only
as long as necessary.

Create process improvement charts as a team decision, and maintai
responsibility. When you agree to create a chart, agree to keep it up
charts, this means taking 30 seconds to mark the board when the stg

Each team member should update his own status. Some char,
information at the end of the day. For these, collectively choo
chart.

gcting'Some
o update the

XP teams have successfully used charts to he pr

« Amount of pairing, by tracking the perc e spent pairing versus the

percentage of time spent flying sol

* Pair switching, by tracking how of the possible pairing combinations actually
paired during each iteration

* Build performance, by tracki @ ber of tests executed per second

* Support responsiv, s, by tracking the age of the oldest support request

e I Goal
o
g
g 75 _
o
MO g
s TS
sw| v/ |/ v]
8 o
| |/ ;s
MV / <
ss| |/ acs 11121314 1518 19 20 21 22
MO| JS |SW| NS|MV|SS Date
(a) Pair combinations (b) Tests per second
Results v
When you have an informative workspa€e, you have -the-minute information

about all the important issues your team '
come and how far you have to go ih your current pl
progressing well or having difficult you kn

u know exactly how far you've
, you know whether the team is

Contraindications

If your team doesn'’t sit togethe 1ared workspace, you probably won’t be able to
create an effective informative

Alternatives

If your team d
to achieve so
the hall

p0ls su

sn’t sit to er, but has adjacent cubicles or offices, you might be able
enefits of an informative workspace by posting information in
rea. Teams that are more widely distributed may use electronic
ith daily stand-up meetings.

au nalysis

screwing up.

Unfortunately, this response ignores the reality. If something can go wrong, it will.
People are, well, people. Everybody makes mistakes. I certainly do. Aggressively laying
blame might cause people to hide their mistakes, or to try to pin them on others, but this
dysfunctional behaviour won’t actually prevent mistakes.

Instead of getting angry, try to remember: everybody is doing the best job they can
given their abilities and knowledge.

Rather than blaming people, blame the process. What is it about the way we work that
allowed this mistake to happen? How can we change the way we work so that it's

harder for something to go wrong? This is root-cause analysis.

How to Find the Root Cause

A classic approach to root-cause analysis is to ask “why” five times 's a real*World

example.

Problem: When we start working on a new task, we spend a 1otef ti ing the code
into a working state.

Why? Because the build is often broken in source c
Why? Because people check in code without

t

ir tests:

It's easy to stop here and say, “Aha! We People need to run their

tests before checking in.” That is a gorrect running tests before check-in is
part of continuous integration. Buf it’s also already gpart of the process. People know
they should run the tests, they just

Dig deeper. Why don’t they ru g hecking in? Because sometimes the tests
take longer to run than people)

Why do the tests take sg long?
teardown.

desi

Why? Because
database.

es reveals a much more interesting answer than “people aren’t

helps you move away from blaming team members and toward

Root-cause analysis is a technique you can use for every problem you encounter.

You can ask yourself “why” at any time. You can even fix some problems just by
improving your own work habits.

More often, however, fixing root causes requires other people to cooperate. If your team
has control over the root cause, gather the team members, share your thoughts, and ask
for their help in solving the problem.

If the root cause is outside the team’s control entirely, then solving the problem may be
difficult or impossible. For example, if your problem is “not enough pairing” and you
identify the root cause as “we need more comfortable desks,” your team may peed the
help of Facilities to fix it.

In this case, solving the problem is a matter of coordinating with the
Your project manager should be able to help. In the meantime
solutions that are within your control.

When Not to Fix the Root Cause

When you first start applying root-cause analysis,
you can address simultaneously. Work on
biggest problem while simultaneously picki

ore problems than
to chip away at the

Over time, work will go more sm
frequent.
Eventually—it can take months or
you may face the temptation to over ap

you can prevent all possible

process. Before changing thefp
enough to warrant the overhea

will be notably rare. At this point,
root-cause analysis. Beware of thinking that

a root cause may add overhead to the
asK yourself whether the problem is common

Results

When root-cay$e analysi
rather than pl
possibly
ou rai

an instinctive reaction, your team values fixing problems
e. Your first reaction to a problem is to ask how it could have
er than feeling threatened by problems and trying to hide them,
publicCly and work to solve them.

trai ns

@ ary danger of root-cause analysis is that, ultimately, every problem has a cause
(Sid€ of your control.

Don'’t use this as an excuse not to take action. If a root cause is beyond your control,
work with someone (such as your project manager) who has experience coordinating
with other groups.

In the meantime, solve the intermediate problems. Focus on what is in your control.

If your efforts are called “disruptive” or a “waste of time,” you may be
better off avoiding root-cause analysis.

Alternatives
You can always perform root-cause analysis in the privacy of your thoughts. You'll

probably find that a lot of causes are beyond your control. Try to channel your
frustration into energy for fixing processes that you can influence.

Retrospectives

Types of Retrospectives

d of every
retrospectives,
en an unexpected

The most common retrospective, the iteration retrospective,
iteration. In addition to iteration retrospectives we ha
project retrospectives, and surprise retrospectiyes
event changes your situation).

How to Conduct an Iteration Retr tive

Anybody can facilitate an i et ective if the team gets along well. An
experienced, neutral facilitatof start with.

should participate in each retrospective. In order to give
o speak their minds openly, non-team members should not

Everyone on the
participants a cha
attend.

We time-box r ectives to exactly one hour.

to e following schedule in mind as we conduct a retrospective. Don’t try to
atch the'schedille exactly; let events follow their natural pace:
& 0 e Prime Directive
: orming (30 minutes)
] apping (10 minutes)

4. Retfospective objective (20 minutes)

Step 1: The Prime Directive

The team should never use the retrospective to place blame or attack individuals.

Norm Kerth’s Prime Directive. I write it at the top of the whiteboard:

Regardless of what we discover today, we understand and truly believe that
everyone did the best job they could, given what they knew at the time, their skills
and abilities, the resources available, and the situation at hand.

[ask each attendee in turn if he agrees to the Prime Directive and wait for a verbal

n

yes.” If not, I ask if he can set aside his scepticism just for this one meeting. If an
attendee still won’t agree, I won'’t conduct the retrospective.

Step 2: Brainstorming

If everyone agrees to the Prime Directive, hand out index cards a en thel\ write
the following headings on the whiteboard:

* Enjoyable

* Frustrating
* Puzzling

» Same

* More

* Less

Ask the group to reflect on the eventg of the d brainstorm ideas that fall into
these categories. Think of events ' , frustrating, and puzzling, and

If people are reluctant to say eally think, try reading the cards anonymously.
Ask people to read out their cd they finish each one, then hand them in. Stick the
cards up on theb der their headings.

If people have trefible tarted, describe what happened during the iteration.

(“Wednesday, e ur planning session...”) This approach takes longer, but it might
be a goo to jump-Start things when you first start doing retrospectives.

eo ead their cards, others will come up with new ideas. The conversation will
on it

‘ ute Mapping

Mu € mapping is a variant of affinity mapping in which no one speaks. It’s a great way to
categorize a lot of ideas quickly.

You need plenty of space for this. Invite everyone to stand up, go over to the
whiteboard, and slide cards around. There are three rules:

1. Putrelated cards close together.
2. Putunrelated cards far apart.
3. No talking.

If two people disagree on where to place a card, they have to work out a compromise
without talking.

This exercise should take about 10 minutes, depending on the size of the team. As
before.

Once mute mapping is complete, there should be clear groups of car
whiteboard. Ask everyone to sit down, then take a marker and draw a circ
each group.

Don't try to identify the groups yet; just draw the circles

Each circle represents a category. You can have as many asgou
circled the categories, read a sampling of cards from each ‘ci
name the category

e you*have
kK the team to

Finally, after you have circled and named
should be improved during the next iterati

on which categories

Give each person five votes. Partici
wish, or spread their votes amongs

ir votes on one category if they

Step 4: Retrospective Objec

After the voting en e category should be the clear winner.

Discard the car omt er categories.

Now that team haslipicked a category to focus on, it’s time to come up with options

for imp t. T s a good time to apply your root-cause analysis skills. Read the
ds in category again, then brainstorm some ideas.

oo detailed when coming up with ideas for improvement. A general direction

ough. For example, if “pairing” is the issue, then “switching pairs more often”

times” could be a third.

When you have several ideas, ask the group which one they think is best. If there isn't a
clear consensus, vote.

This final vote is your retrospective objective.
After the Retrospective

The retrospective serves two purposes: sharing ideas gives the team a chance to grow
closer and coming up with a specific solution gives the team a chance to improve.

Results

When your team conducts retrospectives well, your ability to
software steadily improves. The whole team grows closer and mor
group has more respect for the issues other groups face. You are ho
your successes and failures and are more comfortable with change

Contraindications
The biggest danger in a retrospective is that it wil ealenug for acrimony rather
than for constructive problem solving. A skil aci prevent this, but you

and. Be

probably don’t have such a facilitator o
retrospectives if some team members tend

utious about conducting
or blame others.

Alternatives

Some organizations define org@ni -widle processes. Others assign responsibility for
echnical lead, or architect. Although these
approaches might lead to a goo | process, they don’t usually lead to continuous

process improvem
Collaborating

Trust

effectively and without fear.

p"0f people comes together to work as a team, they go through a series of
1amics known as “Forming, Storming, Norming, and Performing”

The team jells. Productivity shoots up. They do really amazing work.

What does it take to achieve this level of productivity? The team must take joint
responsibility for their work.

When one member of a team encounters a question that she cannot answer, she doesn’t
hesitate to ask someone who does know the answer.

Trust is essential for the team to perform this well. You need to trust that taking time to
help others won’t make you look unproductive. You need to trust that you’ll be treated
with respect when you ask for help or disagree with someone.
Here are some strategies for generating trust in your XP team.

Team Strategy #1: Customer-Programmer Empathy

Customers often feel that programmers don’t care enough about th eeds a
deadlines, some of which, if missed, could cost them their jobs.

Programmers often feel forced into commitments they can’ their health
and relationships.

Programmers react by inflating estimates and_focu
of necessary features; customers react by i
schedule pressure.

on te | toys at the expense
ammer estimates and applying

“Death march teams are the norm, ot the exception...JThese teams] are often

. Retrospectives also help, if your team can
avoid placing blame. Program help by being respectful of customer goals, and
customers can he

recommendations.

f this is easier with energized work.

Team Strate rammer-Tester Empathy

rS tend not to show respect for the testers’ abilities, and testers see

hooting down the programmers’ work.

ers, remember that testing takes skill and careful work, just as programming

Take advantage of testers’ abilities to find mistakes you would never consider, and
thank them for helping prevent embarrassing problems from reaching stakeholders and
users.

Testers, focus on the team's joint goal: releasing a great product. When you find a
mistake, it's not an occasion for celebration. Remember, too, that everybody makes

mistakes, and mistakes aren’t a sign of incompetence or laziness.

Team Strategy #3: Eat Together

Another good way to improve team cohesiveness is to eat together. Something about
sharing meals breaks down barriers and fosters team cohesiveness. Try providing a free
meal once per week. If you have the meal brought into the office, set a table and serve
the food family-style to prevent people from taking the food back to their d . If you
go to arestaurant, ask for a single long table rather than separate tables.

Team Strategy #4: Team Continuity

After a project ends, the team typically breaks up. All w | trust and

cohesiveness that the team has formed is lost. The next ject ts with a brand-new
team, and they have to struggle through the foug phase ormation all over
again.

Rather than assigning people to projects, @ssign am project. Have people join
teams and stick together for multiplg,proje

thers. T dvantage of this by using the most
ther teams. Rotate junior members into those
otate experienced team members out to lead
, the team culture and trust will remain

Some teams will be more effective
effective teams as a training ground
teams so they can learn from the
teams of their own. If you d
intact.

t, a

Organizational St y #1: Show Some Hustle

In the case of a , hustle is energized, productive work. It’s the sense that
the team is i
informativ acgjappropriate reporting, and iteration demos all help convey this

were€ dedicated to meeting my needs and respecting my pocketbook. If I still lived in
that city and needed to move again, | would hire them in an instant. They earned my

goodwill—and my trust.

Organizational Strategy #2: Deliver on Commitments

If your stakeholders have worked with software teams before, they probably have
plenty of war wounds from slipped schedules, unfixed defects, and wasted money.

In addition, they probably don’t know much about software development. That puts
them in the uncomfortable position of relying on your work, having had poor results
before, and being unable to tell if your work is any better.

Meanwhile, your team consumes thousands of dollars every week in salary and support.

How do stakeholders know that you're spending their money wisely? How do they
know that the team is even competent?

delivering on commitments.

Fortunately, XP teams demonstrate both of these results every
commitment to deliver working software when you build yeur
plans.

Organizational Strategy #3: Manage Problems

When you encounter a problem, start by lgtting the w tegam know about it. Bring it
up by the next stand-up meeting at the v is gives the entire team a chance
to help solve the problem.

If the setback is relatively small, y
using some of your iteration slack. S

ight be able to absorb it into the iteration by
roblems are too big to absorb no matter how
ether as a whole team as soon as possible

)

When you've ident a problem, let the stakeholders know about it. But bring bigger

The soo
around

olders know about a problem the more time they have to work
analysis of the possible solutions as well as their technical costs.

izat Strategy #4: Respect Customer Goals
garting a new XP project, programmers should make an extra effort to welcome

tomers. One particularly effective way to do so is to treat customer goals with

Another way for programmers to take customer goals seriously is to come up with
creative alternatives for meeting those goals. If customers want something that may

take a long time or involves tremendous technical risks, suggest alternate approaches to
reach the same underlying goal for less cost.

As programmers and customers have these conversations, barriers will be broken and
trust will develop.

Organizational Strategy #5: Promote the Team

You can also promote the team more directly. One team posted pictures and charts on
the outer wall of the workspace that showed what they were working on and how it was
progressing. Another invited anyone and everyone in the company to attend its
iteration demos.

Organizational Strategy #6: Be Honest

In your enthusiasm to demonstrate progress, be careful not tg
Borderline behaviour includes glossing over known defects in an it
credit for stories that are not 100 percent complete, and e
few days in order to finish everything in the plan.

Sit Together

We communicate rapidly and accur
Speaker phone, you know how mu

to conduct a team meeting via
-to-face conversations make.

Compared to an in-person discussio conferences are slow and stutter-filled, with

uncomfortable gaps in the convexnsati ople talking over each other.
What you may not have reali much this affects your work. Imagine you're a
programmer on a non agile and you need to clarify something in your

requirements doc
domain expert, Mar
When you get
youve been m

t in order to finish an algorithm. You fire off an email to your
n take a break to stretch your legs and get some coffee.

read. Half an hour later, your inbox chimes. Mary has responded.
ary misunderstood your message and answered the wrong

e answer—after all, you've been working at this company for a long

you know most of the answers—and get back to work.

with Mary. It wasn’t exactly what you thought, but you were pretty close. You go back
and fix your code.

Accommodating Poor Communication

As the distance between people grows, the effectiveness of their communication
decreases.

People start guessing to avoid the hassle of waiting for answers. Mistakes appear.
To combat this problem, most development methods attempt to reduce the need for
direct communication. It’s a sensible response. If questions lead to delays and errors,

reduce the need to ask questions!

The primary tools teams use to reduce reliance on direct communication are
development phases and work-in-progress documents.

A Better Way

In XP, the whole team—including experts ifi business, rogramming, and testing

—sits together in a open workspa a question, you need only turn
your head and ask. You get an instant response, and’if something isn’t clear, you can

need some information from ai pert, Mary, in order to code an algorithm.
ail, you turn your head. “Mary, can you clarify

something for me?*

e answer is clear. You're a little surprised: Mary's answer
you expected. It's good that you talked it over. Now, back

After some more
was completelyfdifferent
to work!

g Great Communication

ittihg” together eliminates the waste caused by waiting for an answer, which
dramatically improves productivity.

Programmers on XP teams spend a far greater percentage of their time programming. I
attribute that to the increased communication effectiveness of sitting together.

Rather than sitting in hour-long meetings, conversations last only as long as needed and
involve only the people necessary.

Imagine a team that sits together. Team members are concentrating on their work and
talking quietly with their partners. Then somebody mentions something about

managing database connections, and another programmer perks up. “Oh, Tom and I
refactored the database connection pool last week. You don’t need to manage the
connections manually anymore.”

When team members are comfortable speaking up like this, it happens often
and saves time and money every time. There’s another hidden benefit to sitti
together: it helps teams jell and breaks down us-versus-them attit

Secrets of Sitting Together

that people be physically present to answer questions. If sonie absent often
—product managers tend to fall into this category—mak eone else on the

team can answer the same questions.

Similarly, sit close enough to each other that you can ha ick discussion without

getting up from your desk or shouting.
Available instant help doesn’t do od if y 't ask for it. Many organizations
discourage interruptions

There’s no sense in banging yof agaimst a wall when the person with the answer

is right across the room. To ¢ is attitude, many teams have a rule: “We must

n

always help when aske

Making Room
Sitting togethe f those things that’s easy to say and hard to do. It’s not that the
act itsel ul e real problem is finding space.

am s in adjacent cubicles can convert them into an adequate shared
e, but even with cubicles, it takes time and money to hire people to rearrange

Designing Your Workspace

Programmers should all sit next to each other because they collaborate moment-to-
moment.

Testers should be nearby so programmers can overhear them talk about issues.

Domain experts and interaction designers don’t need to be quite so close, but should be
close enough to answer questions without shouting.

The product manager and project manager are most likely to have conversations that
would distract the team. They should sit close enough to be part of the buzz but not so

close that their conversations are distracting.

Be sure that everyone has a space they can call their own. You also need angadditipnal

enclosed room with a door, or cubes away from the open worksp have
privacy for personal phone calls and individual meetings.

Results

When your team sits together, communication is mugh m effective. You stop
guessing at answers and ask more questions. You oyerhea erp e’s conversations

and contribute answers you may not expect.

Real Customer Involvement

We understand the goals and frustg@ations of our customiers and end-users.

In an XP team, on-site customers ar onsible for choosing and prioritizing features.

The value of the project is in thei his is a big responsibility—as an on-site

for the software and the end-users who use the software. Their goals may not
ment

Despite this challenge, in-house custom development makes it easy to involve real
customers because they're easily accessible. The best approach is to bring your

customers onto the team —to turn your real customers into on-site customers.

Outsourced Custom Development

Outsourced custom development is similar to in-house development, but you may not
have the connections that an in-house team does.

If you can’t bring real customers onto the team, make an extra effort to involve them.

Meet in person with your real customers for the first week or two of the project so you
can discuss the project vision and initial release plan.

Try to meet face-to-face at least once per month to discuss plans. If you are sodfar apart
that monthly meetings aren’t feasible, meet at least once per release.

Ubiquitous Language

The Domain Expertise Conundrum

Overcoming this challenge is, fundamen an issue of communication.

The challenge is communicati ormation clearly and accurately.

Two Languages

Imagine for a ent t u're driving to a job interview. You forgot your map, so

you're getting from a friend on your cell phone (hands free, of course!):

pr in this scenario is that you and your friend are speaking two different
age fge talking about what you see on the road and your friend is talking
hat sees on his map. You need to translate between the two, and that adds

error.

ar problem occurs between programmers and domain experts. Programmers
program in the language of technology: classes, methods, algorithms, and databases.
Domain experts talk in the language of their domain: financial models, chip fabrication
plants, and the like.

You could try to translate between the two languages, but it will add delays and errors.
Instead, pick just one language for the whole team to use—a ubiquitous language.

How to Speak the Same Language

Programmers should speak the language of their domain experts, not the other way
around.

Ubiquitous Language in Code

As a programmer, you might have trouble speaking the language of yourfdomain
experts.

When you’re working on a tough problem, it’s difficult to make t al translation

from the language of code to the language of the domain.
A better approach is to design your code to use the languag th ain. You can
name your classes, methods, and variables anything. W, otu terms that your

domain experts use?

This is more than learning the domain to gvrite the s arg; this is reflecting in code
how the users of the software think and sp eir work.

Refining the Ubiquitous Langua

The ubiquitous language informs pr mers, but the programmers need for rigorous
formalization also informs the 0 team. [often see situations in which

programmers ask a question 1 by*a coding problem—that in turn causes

domain experts to question so eir assumptions.

Your ubiquitous lan e, therefore, is a living language. It’s only as good as its ability to
reflect reality. A w things, improve the language as well. There are three

Third, update the design of the software with the change. The model and the ubiquitous
language must always stay in sync.

Results

When you share a common language between customers and programmers, you reduce
the risk of miscommunication. When you use this common language within the design
and implementation of the software, you produce code that’s easier to understand and
modify.

Stand-Up Meetings

XP projects have a more effective mechanism: informative workspaces and the daily
stand-up meeting.

How to Hold a Daily Stand-Up Meeting

A stand-up meeting is very simple. At a pre-set time every day, th ol ds in
a circle. One at a time, each person briefly describes new inform tha

should know.

Some teams use a formal variant of the stand-up called the Daidy Sc

In the Daily Scrum, participants specifically answer thre stion

1. What did I do yesterday?

2. What will I do today?

3. What problems are preventing me from i ress:

One problem with stand-up meetings is that theyi rupt the day. This is a particular
problem for morning stand-ups; ause team®* members know the meeting will

interrupt their work, they sometimes*ait for the stand-up to end before starting to
work.

You can reduce this problem b g the stand-up to later in the day, such as just
before lunch.

Be Brief
The purpose o p meeting is to give everybody a rough idea of where the team
is.It'sno ive a complete inventory of everything happening in the project.

S we stand: our tired feet remind us to keep the meeting short. Each person

0 ds to say a few sentences about her status. Thirty seconds per person is
ough. More detailed discussions should take place in smaller meetings with
deople involved.

A

Brevity is a tough art to master. To practice, try writing your statement on an index card
in advance, then read from the card during the stand-up.

Another approach is to time-box the stand-up. Set a timer for 5 or 10 minutes,
depending on the size of the team. When the timer goes off, the meeting is over, even if
there are some people who haven’t spoken yet. At first, you'll find that the meeting is cut

off prematurely, but the feedback should help people learn to speak more briefly after a
week or two.

Results

When you conduct daily stand-up meetings, the whole team is aware of issues and
challenges that other team members face, and it takes action to remove them. Everyone
knows the project’s current status and what the other team members are working on.

Coding Standards

XP suggests creating a coding standard: guidelines to which all developersf@agree to
adhere when programming.

Beyond Formatting

We agreed on how we should and shouldn’t handle exceptions, w
debugging code, and when and where to log events.

These standards helped us far more than a congist atting”style would have
because each one had a concrete benefit. Perhaps s wh ere able to agree on
them when we couldn’t agree on formattin S.

How to Create a Coding Standard

It may be one of the first things tha ramme s a team. Over time, you'll amend
and improve the standards.

Applying two guidelines:

1. Create the minimal set o ards you can live with.

2. Focusonco ncy and consensus over perfection.

ion 0fcoding standards during the first iteration.

ur coding standard is often to select an industry-standard style

* Tools, key bindings, and IDE
* File and directory layout

 Build conventions

* Error handling and assertions
» Approach to events and logging

* Design conventions (such as how to deal with null references)

Limit your initial discussion to just one hour. Write down what you agree on. If you
disagree about something, move on. You can come back to it later.

Consider bringing in a professional facilitator to redirect the discussion to your team
goals when the things get heated.

approach or the other, then revisit the issue.

No matter what standards you choose, someone will be prq
guideline.

Adhering to the Standard

ch mistakes and maintain
ting and coding questions not

People make mistakes. Pair programming lelps develo
self-discipline. It provides a way to di

addressed by the guidelines.

ople adhere to the standard, because many
code. Code tends to settle on the standard as

Collective code ownership also help
different people will edit the same piec
aresult.

Start by talking with your collea one to see if there’s a disagreement. Take an
attitude of collaborativeyproble

If the objector ith ghe standard but isn’t applying it, it's possible that the
standard isn’t i very situation.

During this d you may learn that the objector doesn't understand the
standar is ti
S.

with greater ease. Pair programming moves much more smoothly and you look for ways
to improve the express ability and robustness of your code as you write it.

Iteration Demo
An XP team produces working software every week, starting with the very first week.

Programmers need discipline to keep the code clean so they can continue to make
progress.

Customers need discipline to fully understand and communicate one set of features
before starting another.

doing great work and seeing progress.

The iteration demo is a powerful way to do so. First, it’s a concrete g
team’s progress. The team is proud to show off its work, and stake
see progress.

Second, the demos help the team be honest about its pro . Iteration demos are open
to all stakeholders, and some companies even invi rna tomers to attend.

rom the customers.

Finally, the demo is an opportunity to solicif regular fee

How to Conduct an Iteration De

Anybody on the team can conduct t eration demo, but I recommend that the product

manager do so. He has the best under ding of the stakeholders’ point of view and

speaks their language.

The whole team, key stakehold the executive sponsor should attend as often as
possible. Include r tomers when appropriate.

The entire dem ul e about 10 minutes.

Ifit runs long, orways to bring it to a close before it reaches half an hour.

Beth th ucgmanager and the demo should be available for further discussion and

ftef’'the meeting.

yone is together, briefly describe the features scheduled for the iteration and

After your introduction, go through the list of stories one at a time. Read the story, add
any necessary explanation, and demonstrate that the story is finished. Use customer
tests to demonstrate stories without a user interface.

Once the demo is complete, tell stakeholders how they can run the software themselves.
Make an installer available on the network, or provide a server for stakeholder use, or
something similar.

Two Key Questions

At the end of the demo, ask your executive sponsor two key questions:*

1. Is our work to date satisfactory?

2. May we continue?

These questions help keep the project on track and remind your sponsor to speak up if
she’s unhappy.

Sometimes, she may answer “no” to the first question, or she m ut be
clearly reluctant. These are early indicators that something is goi the
demo, talk with your sponsor and find out what she’s unhappy ab, e immediate

action to correct the problem.
In rare cases, the executive sponsor will answer “no” to the seco uestion. You should
never hear this answer—it indicates a serious bre ni ication.
Try to find out what went wrong, and inch‘e your spo i

the project retrospective,

if possible.

Weekly Deployment Is Essential

The iteration demo isn’t just a dog a ony show; it's a way to prove that you're
making real progress every, ationAtways provide an actual release that
stakeholders can try for the er the demo. Even if they are not interested in
trying a demo release, create ; with a good automated build, it takes only a
moment. If you cant crgate a releas@pfour project may be in trouble.

One of the biggestysch e risks in software is the hidden time between “we’re done”

and "we've shi ams often have to spend several extra weeks (or months) after

ythm of iteration demos and stakeholder releases is an excellent way to
ode releasable.

R

When you conduct a weekly iteration demo and demo release, you instil trust in
stakeholders, and the team is confident in its ability to deliver.

Reporting

All the information you need is at your fingertips. Why do you need reports?

The people who aren’t on your team, particularly upper management and stakeholders,
do. They have a big investment in you and the project, and they want to know how well

it's working.

Types of Reports

Progress reports are exactly that: reports on the progress of the s an
iteration demo or arelease plan.
Management reports are for upper management. They provide h formation

that allows management to analyze trends and set goals.
Progress Reports to Provide

Vision statement

n statement that describes what

Your on-site customers should createdand update a vi

you're doing, why you're doing it, alid how you'll if you're successful.

Weekly demo

1g progress as working software. Invite
0

Nothing is as powerful at de
stakeholders to the weekly ite

Release and iterat lans

The release an@ iteration"planning boards already posted in your workspace provide
great detail a ess. Invite stakeholders to look at them any time they want
detailed

Some stakeholders may want more detail than the vision statement provides, but not
the overwhelming detail of the release and iteration plans. For these stakeholders,
consider maintaining a document that summarizes planned releases and the significant
features in each one.

Status email

A weekly status email can supplement the iteration demo. I like to include a list of the
stories completed for each iteration and their value.

Management Reports to Consider

Whereas progress reports demonstrate that the team will meet it nt

reports demonstrate that the team is working well.
Productivity

Instead of trying to measure features, measure the team’s j
Create an objective measure of value, such as return ongd
revenue, cost savings, or some other valuable

This productivity metric reflects that fact. on this metric, you should have
a team that includes on-site customérs. These customels will figure out what customers
or users want and show key stakeh how to r use the software. By doing so,
they will help turn technically excell oftware into truly valuable software.

Throughput

Throughput is the number of fe the team can develop in a particular amount of
time.

Defects

Anyone can pr ware quickly if it doesn’t have to work. Consider

counter ing y, hroughput report with defect counts.

ect is under time pressure—and projects usually are—stakeholders may want

know that the team is using its time wisely. Often, when the team mentions its velocity,

stakeholders question it. “Why does it take 6 programmers a week to finish 12 days of

work? Shouldn’t they finish 30 days of work in that time?”

To keep the burden low programmers, write their times on the back of each iteration
task card and hand them in to the project manager for collating into these categories:

» Unaccounted and nonprojected work (time spent on other projects,
administration,company-wide meetings, etc.)

* Out of office (vacation and sick days)

* Improving skills (training, research time, etc.)

* Planning (time spent in planning activities, including the retrospective and iteration
demo)

* Developing (time spent testing, coding, refactoring, and designing)

Reports to Avoid

Source lines of code (SLOC) and function points Source lines of cod

Number of stories

Some people think they can use the numbepfof stories d€livergd each iteration as a
measure of productivity. Don’t do that. Sto thi do with productivity.

Velocity

If a team estimates its stories in adv
an improvement in productivit
productivity changes and inco

n improvement in velocity may result from
, there’s no way to differentiate between

Code quality

There’s no substitu developer expertise in the area of code quality. The available
code quality m , Su clomatic code complexity, all require expert
interpretation no single set of metrics that clearly shows design or code
quality.

sul
ate reporting will help stakeholders trust that your team is doing good work.

, the need for reports will decrease, and you will be able to report less
ation less frequently.

	Thinking
	Pair Programming
	Why Pair?
	How to Pair
	Driving and Navigating
	Pairing Stations
	Challenges
	Comfort
	Mismatched skills
	Communication style
	Results
	Contraindications
	Alternatives

	Energized Work
	How to Be Energized
	Supporting Energized Work
	Taking Breaks
	Results
	Contraindications
	Alternatives

	Informative Workspace
	Subtle Cues
	Big Visible Charts
	Hand-Drawn Charts
	Process Improvement Charts
	Results
	Contraindications
	Alternatives

	Root-Cause Analysis
	How to Find the Root Cause
	How to Fix the Root Cause
	When Not to Fix the Root Cause
	Results
	Contraindications
	Alternatives

	Retrospectives
	Types of Retrospectives
	How to Conduct an Iteration Retrospective
	Step 1: The Prime Directive
	Regardless of what we discover today, we understand and truly believe that everyone did the best job they could, given what they knew at the time, their skills and abilities, the resources available, and the situation at hand.
	Step 2: Brainstorming
	Step 3: Mute Mapping
	Step 4: Retrospective Objective
	After the Retrospective
	Results
	Contraindications
	Alternatives

	Collaborating Trust
	Team Strategy #1: Customer-Programmer Empathy
	Team Strategy #2: Programmer-Tester Empathy
	Team Strategy #3: Eat Together
	Team Strategy #4: Team Continuity
	Organizational Strategy #1: Show Some Hustle
	Organizational Strategy #2: Deliver on Commitments
	Organizational Strategy #3: Manage Problems
	Organizational Strategy #4: Respect Customer Goals
	Organizational Strategy #5: Promote the Team
	Organizational Strategy #6: Be Honest

	Sit Together
	Accommodating Poor Communication
	A Better Way
	Exploiting Great Communication
	Secrets of Sitting Together
	Making Room
	Designing Your Workspace
	Results

	Real Customer Involvement
	In-House Custom Development
	Outsourced Custom Development

	Ubiquitous Language
	The Domain Expertise Conundrum
	How to Speak the Same Language
	Ubiquitous Language in Code
	Refining the Ubiquitous Language
	Results

	Stand-Up Meetings
	How to Hold a Daily Stand-Up Meeting
	Be Brief
	Results
	Coding Standards
	Beyond Formatting
	How to Create a Coding Standard
	Adhering to the Standard
	Results (1)

	Iteration Demo
	How to Conduct an Iteration Demo
	Two Key Questions
	Weekly Deployment Is Essential
	Results

	Reporting
	Types of Reports
	Progress Reports to Provide Vision statement
	Weekly demo
	Release and iteration plans
	Burn-up chart
	Roadmap
	Status email
	Management Reports to Consider
	Productivity
	Throughput
	Defects

	Time usage
	Reports to Avoid
	Number of stories
	Velocity
	Code quality

	Results

