

 Best of Study bestofstudy.com

Agile Technologies

Module-2

Understanding XP: The XP Lifecycle, The XP Team, XP Concepts, Adopting XP: Is XP
Right for Us?, Go!, Assess Your Agility

Overview of Extreme Programming, The Practices of Extreme Programming,
Conclusion, Bibliography, Planning Initial Exploration, Release Planning, Iteration
Planning, Defining "Done", Task Planning Iterating, Tracking.

 Best of Study bestofstudy.com

Understanding XP

The XP Lifecycle

Software projects do need more requirements, design, and testing—which is why
XP teams work on these activities every day. Yes, every day.

XP emphasizes face-to-face collaboration. This is so effective in eliminating
communication delays and misunderstandings that the team no longer needs distinct

phases. This allows them to work on all activities every day—with simultaneous phases

—as shown below

How It Works

 XP teams perform nearly every software development activity simultaneously.

 Best of Study bestofstudy.com

 XP does it by working in iterations: week-long increments of work. Every week,
the team does a bit of release planning, a bit of design, a bit of coding, a bit of
testing, and so forth.

 They work on stories: very small features, or parts of features, that have

customer value. Every week, the team commits to delivering four to ten stories.

 Throughout the week, they work on all phases of development for each story. At
the end of the week, they deploy their software for internal review.

The following sections show how traditional phase-based activities correspond to an XP
iteration.

Planning

Every XP team includes several business experts—the on-site customers—who are

responsible for making business decisions. The on-site customers point the project in

the right direction by clarifying the project vision, creating stories, constructing a
release plan, and managing risks. Programmers provide estimates and suggestions
based on customer priorities

Together, the team strives to create small, frequent releases that maximize value.
In addition to the overall release plan, the team creates a detailed plan for the upcoming
week at the beginning of each iteration, its informative workspace keeps everyone
informed about the project status.

Analysis

On-site customers sit with the team full-time. On-site customers are responsible for
figuring out the requirements for the software. To do so, they use their own knowledge
as customers combined with traditional requirements-gathering techniques. When
programmers need information, they simply ask. Customers are responsible for
organizing their work so they are ready when programmers ask for information.

Some requirements are tricky or difficult to understand. Customers formalize these
requirements, with the assistance of testers, To assist in communication, programmers
use a ubiquitous language in their design and code.

Design and coding

XP uses incremental design and architecture to continuously create and improve the
design in small steps. This work is driven by test-driven development (TDD), To support
this process, programmers work in pairs, and ensures that one person in each pair
always has time to think about larger design issues.

 Best of Study bestofstudy.com

Programmers are also responsible for managing their development environment. They
use a version control system for configuration management. Programmers also
maintain coding standards and share ownership of the code.

Testing

In XP each member of the team—programmers, customers, and testers—makes his own

contribution to software quality.
Programmers provide the first line of defence with test-driven development. TDD
produces automated unit and integration tests. These tests help ensure that the

software does what the programmers intended. Likewise, customers tests help ensure

that the programmers’ intent matches customers’ expectations. Customers review work

in progress to ensure that the UI works the way they expect. Finally, testers help the
team understand whether their efforts are in fact producing high-quality code. When
the testers find a bug, the team conducts root-cause analysis and considers how to
improve their process to prevent similar bugs from occurring in the future. Testers also

explore the software’s non-functional characteristics, such as performance and stability.

Customers then use this information to decide whether to create additional stories.

When bugs are found, programmers create automated tests to show that the bugs have
been resolved.

Deployment

XP teams keep their software ready to deploy at the end of any iteration. They deploy
the software to internal stakeholders every week in preparation for the weekly iteration
demo. Deployment to real customers is scheduled according to business needs.

When the project ends, the team may hand off maintenance duties to another team.
In this case, the team creates documentation and provides training as necessary during
its last few weeks.

The XP Team

Team software development requires the information to spread out among many
members of the team. Different people know:

• How to design and program the software (programmers, designers, and architects)

• Why the software is important (product manager)

• The rules the software should follow (domain experts)

• How the software should behave (interaction designers)

 Best of Study bestofstudy.com

• How the user interface should look (graphic designers)

• Where defects are likely to hide (testers)

• How to interact with the rest of the company (project manager)

• Where to improve work habits (coach)

The Whole Team

XP teams sit together in an open workspace. At the beginning of each iteration, the team
meets for a series of activities: an iteration demo, a look back, and iteration planning.
These typically take two to four hours in total. The team also meets for daily stand-up
meetings, which usually take five to ten minutes each.

On-Site Customers

 On-site customers—often just called customers—are responsible for defining the

software the team builds.

 Customers’ most important activity is release planning. Customers need to

highlight the project’s vision; identify features and stories; determine how to

group features into small, frequent releases; manage risks; and create an
achievable plan by coordinating with programmers.

 On-site customers may or may not be real customers, regardless; customers are

responsible for refining their plans by providing feedback from real customers
and other stakeholders. One of the venues for this feedback is the weekly
iteration demo.

 In addition to planning, customers are responsible for providing programmers
with

 requirements details upon request.

 Typically, product managers, domain experts, interaction designers, and
business analysts play the role of the on-site customer.

The product manager (aka product owner)

 The product manager has only one job on an XP project, that job is to maintain
and promote the product vision.

 In practice, this means documenting the vision, sharing it with stakeholders,
incorporating feedback, generating features and stories, setting priorities for

 Best of Study bestofstudy.com

release planning, providing direction for the team’s on-site customers, reviewing
work in progress, leading iteration demos, involving real customers, and dealing
with organizational politics.

 The best product managers have deep understandings of their markets.

Domain experts (aka subject matter experts)

 Most software operates in a particular industry, such as finance, that has its own
specialized rules for doing business. To succeed in that industry, the software
must implement those rules faithfully and exactly. These rules are domain rules,
and knowledge of these rules is domain knowledge.

 Most programmers have gaps in their domain knowledge.

 The team’s domain experts are responsible for figuring out these details and
having the answers at their fingertips. Domain experts, also known as subject
matter experts, are experts in their field.

 Domain experts spend most of their time with the team, figuring out the details
of upcoming stories and standing ready to answer questions when programmers
ask.

Interaction designers

 The user interface is the public face of the product. For many users, the UI is the

product. They judge the product’s quality solely on their perception of the UI.

 Interaction designers help define the product UI. Their job focuses on
understanding users, their needs, and how they will interact with the product.
They perform such tasks as interviewing users, creating user personas,
reviewing paper prototypes with users, and observing usage of actual software.

Business analysts

On an XP team, business analysts augment a team that already contains a product
manager and domain experts. The analyst continues to clarify and refine customer
needs, but the analyst does so in support of the other on-site customers, not as a

 Best of Study bestofstudy.com

replacement for them. Analysts help customers think of details they might otherwise
forget and help programmers express technical trade-offs in business terms.

Programmers

 The bulk of the XP team consists of software developers in a variety of
specialties. Each of these developers contributes directly to creating working
code.

 If the customers’ job is to maximize the value of the product, then the

programmers’ job is to minimize its cost.

 Programmers spend most of their time pair programming. Using test-driven
development, they write tests, implement code and incrementally design and
architect the application.

 With the help of the whole team, the programmers strive to produce no bugs in
completed software.

 At the beginning of the project, the programmers establish coding standards that
allow them to collectively share responsibility for the code.

 Programmers have the right and the responsibility to fix any problem they see,
no matter which part of the application it touches.

 Programmers rely on customers for information about the software to be built.

Designers and architects

Expert designers and architects are necessary. They contribute by guiding the team’s
incremental design and architecture efforts and by helping team members see ways of
simplifying complex designs.

Technical specialists

 In XP the “programmer” role includes other software development roles. The

programmers could include a database designer, a security expert, or a network
architect.

 XP programmers are generalizing specialists. Although each person has his own
area of expertise, everybody is expected to work on any part of the system that
needs attention

Testers

 Best of Study bestofstudy.com

 Testers help XP teams produce quality results from the beginning.

 They help customers identify holes in the requirements and assist in customer
testing.*

 Testers also act as technical investigators for the team. They help the team
identify whether it is successfully preventing bugs from reaching finished code.

 Testers also provide information about the software’s non-functional

characteristics, such as performance, scalability, and stability.

 When testers find bugs, they help the rest of the team figure out what went
wrong so that the team as a whole can prevent those kinds of bugs from
occurring in the future.

Adopting XP

Before adopting XP, you need to decide whether it’s appropriate for your situation.

Often, people’s default reaction to hearing about XP is to say, “Well, of course that

works for other teams, but it couldn’t possibly work for us.”

XP’s applicability is based on organizations and people, not types of projects.

Is XP Right for Us?

You can adopt XP in many different conditions; here are some prerequisites and
recommendations about your team’s environment.

Prerequisite #1: Management Support

It’s very difficult to use XP in the face of opposition from management. Active support is
best., you will need the following: A common workspace with pairing ,Team members
solely allocated to the XP project, A product manager, on-site customers, and integrated
testers

If management isn’t supportive.

If you want management to support your adoption of XP, they need to believe in its
benefits. Think about what the decision-makers care about. What does an
organizational success mean to your management? What does a personal success mean?
How will adopting XP help them achieve those successes? What are the risks of trying
XP, how will you mitigate those risks, and what makes XP worth the risks? Talk in terms
of your managers’ ideas of success, not your own success.

Prerequisite #2: Team Agreement

 Best of Study bestofstudy.com

Just as important as management support is the team’s agreement to use XP. If team
members don’t want to use XP, it’s not likely to work. XP assumes good faith on the part
of team members—there’s no way to force the process on somebody who’s resisting it.

If people resist...It’s never a good idea to force someone to practice XP against his will. In
the best case, he’ll find some way to leave the team, quitting if necessary. In the worst
case, he’ll remain on the team and silently sabotage your efforts.

One way to help people agree to try XP is to promise to revisit the decision on a specific
date. (Allow two or three months if you can.) At that point, if the team doesn’t want to
continue using XP, stop.

Prerequisite #3: A Colocated Team

XP relies on fast, high-bandwidth communication for many of its practices. In order to
achieve that communication, your team members needs to sit together in the same
room.
If your team isn’t colocated...

Colocation makes a big difference in team effectiveness. Don’t assume that your team
can’t sit together; be sure that bringing the team together is your first option.

Prerequisite #4: On-Site Customers

The on-site customers’ decisions determine the value of the software.
On-site customers are critical to the success of an XP team. They, led by the product
manager, determine which features the team will develop. In other words, their
decisions determine the value of the software. Of all the on-site customers, the product
manager is likely the most important. She makes the final determination of value. A
good product manager will choose features that provide value to your organization.

If your product manager is too busy to be on-site...

If you have an experienced product manager who makes high-level decisions about
features and priorities, but who isn’t available to sit with the team full-time, you may be
able to ask a business analyst or one of the other on-site customers to act as a proxy.

Prerequisite #5: The Right Team Size

For teams new to XP, however, I recommend 4 to 6 programmers and no more than 12
people on the team. I also recommend having an even number of programmers so that
everyone can pair program.

If you don’t have even pairs...

 Best of Study bestofstudy.com

The easiest solution to this problem is to add or drop one programmer so you have even
pairs.

Prerequisite #6: Use All the Practices

You may be tempted to ignore or remove some XP practices, particularly ones that make
team members uncomfortable. Be careful of this. XP is designed to have very little
waste. Nearly every practice directly contributes to the production of valuable software.

If practices don’t fit...

You may think that some XP practices aren’t appropriate for your organization. That
may be true, but it’s possible you just feel uncomfortable or unfamiliar with a practice.

Recommendation #1: A Brand-New Codebase

Easily changed code is vital to XP. If your code is cumbersome to change, you’ll have
difficulty with XP’s technical practices, XP teams put a lot of effort into keeping their
code clean and easy to change.

Recommendation #2: Strong Design Skills

Simple, easily changed design is XP’s core enabler. This means at least one person on the
team—preferably a natural leader—needs to have strong design skills.

Recommendation #3: A Language That’s Easy to Refactor

XP relies on refactoring to continuously improve existing designs, so any language that
makes refactoring difficult will make XP difficult. Of the currently popular languages,
object-oriented and dynamic languages with garbage collection are the easiest to
refactor.

Recommendation #4: An Experienced Programmer-Coach

Your team needs a coach. The best coaches are natural leaders—people who remind
others to do the right thing by virtue of who they are rather than the orders they give.
Your coach also needs to be an experienced programmer so she can help the team with
XP’s technical practices.

Recommendation #5: A Friendly and Cohesive Team

XP requires that everybody work together to meet team goals. There’s no provision for
someone to work in isolation, so it’s best if team members enjoy working together.

 Best of Study bestofstudy.com

Go!
 Are you ready to adopt XP?

 Great! Your first step is to arrange for your open workspace

 Find an appropriate project for the team to work on. Look for a project that’s
valuable

 At the same time, figure out who will be on your team. Talk with your project’s
executive sponsor and other stakeholders about whom to include as your on-site
customers, Be sure your team members want to try XP. As you’re forming your
team, consider hiring an experienced XP coach to work with the team full-time

As your project start date draws near, you’ll need supplies for the team’s open
workspace. The following is a good shopping list.

Equipment:

Pairing stations

• Noise-dampening partitions to define your team’s workspace and prevent

noise pollution.

• Plenty of wall-mounted whiteboards for discussions and charts . Ferrous
(magnetic) whiteboards are best because you can stick index cards to
them with magnets.

• Two big magnetic whiteboards for your release and iteration plans.

• A large plastic perpetual calendar (three months or more) for marking

important dates and planned absences

 Best of Study bestofstudy.com

• Any other equipment you normally use.

Software:

Supplies:

• A unit-testing tool such as the xUnit family
• An automated build tool such as the Ant family.
• Any other software you normally use.

• Pencils for index cards.
• Food.
• Dry-erase markers for whiteboards, water-based flip-chart markers for

flip charts.
• Magnets for sticking papers to whiteboards.
• Any other supplies you normally use.

The Challenge of Change

It’s a fact of life: change makes people uncomfortable. XP is probably a big change for
your team. If you previously used a rigid, document-centric process, XP will seem loose
and informal.

Expect team members and stakeholders to be uncomfortable. This discomfort can
extend into the larger organization.

Discomfort and a feeling of chaos is normal for any team undergoing change, but that

doesn’t make it less challenging. Expect the chaotic feeling to continue for at least two

months. Give yourselves four to nine months to feel truly comfortable with your new

process. If you’re adopting XP incrementally, it will take longer.

To survive the transformation, you need to know why you are making this change. What
benefits does it provide to the organization? To the team? Most importantly, what
benefits does it provide to each individual? As you struggle with the chaos of change,
remember the benefits.

Our pledge to users, management, and other stakeholders.

We promise to:
• Make steady progress

• Finish the features that you consider most valuable first

• Show you working software that reflects our progress every week, on

(day of week) at (time) in (location)

 Best of Study bestofstudy.com

• Be honest and open with you about our successes, challenges, and what
we can reasonably provide

Final Preparation

Before starting XP, it’s a good idea to discuss working agreements—that is, which

practices your team will follow .

Discuss your roles and what you expect from each other. It’s best to hold these
conversations as collaborative team discussions. Try to avoid assigning roles or giving
people orders.

In the final weeks before starting your new XP project, review the practices

When you’ve finished these preparations, if you have your team is creating a new

codebase from scratch—you’re ready to go.

Well... yes. You can follow the incremental approach that legacy projects use,

Teams that adopt XP incrementally make substantial improvements, but it’s the teams
that adopt it all at once that really excel.

Be bold. You have the right people, the right workplace, and the will to succeed. Do it!

Applying XP to a Brand-New Project (Recommended)

When starting a brand-new XP project, expect the first three or four weeks to be pretty
chaotic as everyone gets up to speed. During the first month, on-site customers will be
working out the release plan, programmers will be establishing their technical
infrastructure, and everyone will be learning how to work together.

Some people think the best way to overcome this chaos is to take a week or two at the
beginning of the project to work on planning and technical infrastructure before
starting the first iteration. Although there’s some merit to this idea, an XP team should
plan and build technical infrastructure incrementally and continuously throughout the
project as needed.

Starting with a real iteration on the first day helps establish this good habit. Your very
first activity is to plan your first iteration. Normally, this involves selecting stories from
the release plan, but you won’t have a release plan yet.

Instead, think of one feature that will definitely be part of your first release. Brainstorm

a few must-have stories for that feature. These first few stories should sketch out a “

vertical stripe” (see Figure) of your application.

 Best of Study bestofstudy.com

If the application involves user interaction, create a story to display the initial screen or
web page. If it includes reporting, create a story for a report. If it requires installation,
create a story for a installer.

These should keep the programmers busy for several iterations. Try to choose stories
that the programmers already understand well; this will reduce the amount of time
customers need to spend answering programmer questions so they can focus on
creating the release plan.

During the iteration, work on just one or two stories at a time and check your progress
every day. This will help you deliver completed stories even if your initial plan is wildly
inaccurate.

After you’ve finished planning, programmers should start establishing their technical
infrastructure. Set up an integration machine, create your version control repository,
and so forth.

Once that‘s set up, start working on your stories.

During the first iteration, it’s a good idea to have all the programmers work on the first

few stories as a group. Set up a projector so the whole team navigates while one person

drives.

After the first few days, the fundamentals should be well-established and the project
should be large enough for people to work on separate parts without unduly interfering
with each other.

 Best of Study bestofstudy.com

At this point, you can break into pairs and work normally. It’s also a good time to
schedule your first coding standards discussion. For that first meeting, you can usually
just document what you agreed on while working as a group.

While the programmers are working on stories, customers and testers should work on
the vision and release plan and pick a date for your first release.

Each subsequent iteration will be a little easier to plan.

Applying XP to an Existing Project

If you have a legacy project—you can achieve the results, but it will take more time. In

this case, adopt XP incrementally.

The big decision

Other than change itself, the biggest challenge in applying XP to an existing project is
not writing tests, refactoring, or cleaning up your bug database. The biggest challenge is
setting aside enough time to pay down technical debt.

In other words, you incur new technical debt in order to meet your deadlines.

These first steps will allow you to steadily pay down technical debt while continuing to
make progress on new stories. As the bug rate for new code drops, you can start
organizing your bug backlog.

Organize your backlog

If your team is like most teams, your bug database is full of to-dos, questions, feature
requests, and genuine defects. Customers and testers go through the database and
eliminate duplicates and unimportant issues. Close feature requests by turning them
into stories or rejecting them.

Depending on the size of your bug database, you may not be able to do this work in a
single session. Chip away at it every iteration, just as the programmers do with technical
debt.

Fix important bugs

Either way, as your bug database becomes a reliable bug repository, make a fix or don’t
fix decision for each bug. You should probably involve the product manager at some
level and you may need the programmers to estimate the cost of fixing some of the bugs.

Close or defer all the bugs that you decide not to fix in this release. You can revisit them
when you plan the next release. At this point, all that remains in the database is bugs

 Best of Study bestofstudy.com

that you will fix. Turn these bugs into stories, have the programmers estimate any that
remain unestimated, and put them in the release plan.

Move testers forward

When you start this process, your testers will probably spend their time testing each
release prior to delivery. A large part of their workload is likely to be manual regression
testing.

The programmers’ focus on test-driven development will slowly create an automated

regression suite and reduce the pressure on the testers.

Emerge from the darkness

This process will allow you to reduce technical debt, increase code quality, and remove
defects.

Applying XP in a Phase-Based Organization

XP assumes that you use iterations, not phases, which makes using XP in a phase-based

environment difficult. If your organization uses a phase-based approach to

development, you may be able to use the XP development practices even if you can’t

use the other practices.

Your organization may want to try XP within your existing phase-based structure. Your
best course of action is to convince your organization to let you try XP’s simultaneous
phases.

The following suggestions are a starting point; talk to your mentor for more specific
advice.

Mandatory planning phase

Your organization may have a planning phase or planning gate that expects you to
deliver a detailed plan. If you can, allocate a month for the planning phase and use it to
run four actual iterations.

Mandatory analysis phase

 Best of Study bestofstudy.com

If your organization conducts an upfront analysis phase, you may receive a

requirements document. In this case, decompose the requirements document into

stories. One starting point is to create a story out of each sentence including the words “

must,” “shall,” or “should.”

Mandatory design phase

XP assumes the use of incremental design and architecture that is intimately tied to
programming with test-driven development. An upfront design phase has little to add to
this approach.

If you can, conduct actual XP iterations during the design phase and work on the first
stories in your release plan. Use the time to create an initial design and architecture
incrementally. Document the results in your design document.

Mandatory coding phase

XP fits well into the coding phase. Break your coding phase into one-week iterations and
conduct XP as normal.

Mandatory testing phase

XP performs a lot of testing every iteration. A phase-based organization that considers
XP to be the coding phase and expects a long testing phase might schedule too little time
for coding and too much time for testing. However, testing is an important part of XP
and should remain integrated.
Mandatory deployment phase

With a good build, you should be ready to deploy at the end of any iteration.

You can schedule XP’s wrap-up activities for the deployment phase.

Assess Your Agility

Suppose you’ve been using XP for a few months. How can you tell if you’re doing it

properly?

The ultimate measure is the success of your project, but you may wish to review and
assess your approach to XP as well.

To help achieve this lets do a quiz that focuses on five important aspects of agile
development. It explores results rather than specific practices, so you can score well
even after customizing XP to your situation.

This quiz assesses typical sources of risk. Your goal should be to achieve the maximum
score in each category.

 Best of Study bestofstudy.com

Any score less than the maximum indicates risk, and an opportunity for improvement.

To take the quiz, answer the following questions and enter your scores on a photocopy

of the blank radar diagram (Figure 4-2). Don’t give partial credit for any question, and if

you aren’t sure of the answer, give yourself zero points. The result should look

something like Figure 4-1.
The score of the lowest spoke identifies your risk, as follows:

• 75 points or less: immediate improvement required (red)

• 75 to 96 points: improvement necessary (yellow)

• 97, 98, or 99: improvement possible (green)

• 100: no further improvement needed

 Best of Study bestofstudy.com

 Best of Study bestofstudy.com

	Understanding XP
	How It Works
	Planning
	Analysis
	Design and coding
	Testing
	Deployment

	The XP Team
	The Whole Team
	On-Site Customers
	The product manager (aka product owner)
	Domain experts (aka subject matter experts)
	Interaction designers
	Business analysts
	Programmers
	Designers and architects
	Technical specialists
	Testers

	Adopting XP
	Is XP Right for Us?
	Prerequisite #1: Management Support
	If management isn’t supportive.
	Prerequisite #2: Team Agreement
	Prerequisite #3: A Colocated Team
	If your team isn’t colocated...
	Prerequisite #4: On-Site Customers
	If your product manager is too busy to be on-site...
	Prerequisite #5: The Right Team Size
	If you don’t have even pairs...
	Prerequisite #6: Use All the Practices
	If practices don’t fit...
	Recommendation #1: A Brand-New Codebase
	Recommendation #2: Strong Design Skills
	Recommendation #3: A Language That’s Easy to Refactor
	Recommendation #4: An Experienced Programmer-Coach
	Recommendation #5: A Friendly and Cohesive Team

	Go!
	Equipment:
	Software:
	The Challenge of Change
	Final Preparation
	Applying XP to a Brand-New Project (Recommended)
	Applying XP to an Existing Project
	The big decision
	Organize your backlog
	Fix important bugs
	Move testers forward
	Emerge from the darkness
	Applying XP in a Phase-Based Organization
	Mandatory planning phase
	Mandatory analysis phase
	Mandatory design phase
	Mandatory coding phase
	Mandatory testing phase
	Mandatory deployment phase

	Assess Your Agility

