Best of Stlldy bestofstudy.com

Agile Technologies

Module-2

Understanding XP: The XP Lifecycle, The XP Team, XP Concepts
Right for Us?, Go!, Assess Your Agility

Overview of Extreme Programming, The Practices gof Programming,
Conclusion, Bibliography, Planning Initial Explorati i [teration




bestofstudy.com

Best of Study

Understanding XP
(a) Waterfall lifecycle $
Plan Analysis Design Code Tesl Deploy
- sesnnssnasnnnss 3 — 2 months BT PLTTTTPPTTR PP PR
(b) iterative lifecycle $ $ $
=] = = o = - e = =
s = = || 8 z 1Sllsll 2|l = || 8 % || =l = 5 A | =
=lef &S (&= zl&dS (&= EMENS| "
e ] = 3 MONEhS wrrenrseerens P aresessisennss | = 3 MONERS voorsserisee P aeesnssessssni] = 3 MONLS oeesreeeessee
s = Potential release
The XP Lifecycle v

Software projects do need more requirem ting—which is why

XP teams work on these activities ev

XP emphasizes face-to-face collab
communication delays and misund

phases. This allows them to wo

dings that the team no longer needs distinct

11 aetivities every day—with simultaneous phases

—as shown below

$$SSSS$$$$58 55556588885 88888585$

(== =i =y [
glele|e
elElE|E
Zlujuje
,'! u““n-“ $ = Potential release
! _-'_""‘-.
Analysis
" )
c Design o
L o
=5 Code =l
Tesl
B .- R T T
How It Works

e XP teams perform nearly every software development activity simultaneously.




Best of Stu dy bestofstudy.com

e XP does it by working in iterations: week-long increments of work. Every week,
the team does a bit of release planning, a bit of design, a bit of coding, a bit of
testing, and so forth.

e They work on stories: very small features, or parts of features, that have
customer value. Every week, the team commits to delivering four to ten stories.

e Throughout the week, they work on all phases of development for each story. At
the end of the week, they deploy their software for internal review.

The following sections show how traditional phase-based activities correspo an XP
iteration.

Planning
Every XP team includes several business experts—the on-gsite @ are
responsible for making business decisions. The on-site cus
the right direction by clarifying the project vision, créati
release plan, and managing risks. Programmers
based on customer priorities

e project in
, constructing a
and suggestions

Together, the team strives to create small, at maximize value.

In addition to the overall release pl he te detailed plan for the upcoming
week at the beginning of each it@ration, its inform@tive workspace keeps everyone
informed about the project status.

Analysis

On-site customers sit with t ll-time. On-site customers are responsible for
oftware. To do so, they use their own knowledge
d with traditional requirements-gathering techniques. When
rmation, they simply ask. Customers are responsible for
re ready when programmers ask for information.

as customers co
programmers nee
organizing thei ks

aretricky or difficult to understand. Customers formalize these
it assistance of testers, To assist in communication, programmers
us flanguage in their design and code.

this process, programmers work in pairs, and ensures that one person in each pair
always has time to think about larger design issues.




Best of Stu dy bestofstudy.com

Programmers are also responsible for managing their development environment. They
use a version control system for configuration management. Programmers also
maintain coding standards and share ownership of the code.

Testing

In XP each member of the team—programmers, customers, and testers—makes his own

contribution to software quality.
Programmers provide the first line of defence with test-driven development. TDD
produces automated unit and integration tests. These tests help ensure

team understand whether their efforts are in fact producing hig
the testers find a bug, the team conducts root-cause analysis a
improve their process to prevent similar bugs from occurrin
explore the software’s non-functional characteristics, suc
Customers then use this information to decide dditional stories.
When bugs are found, programmers create automa that the bugs have
been resolved.

Deployment

XP teams keep their software read
the software to internal stakeholder
demo. Deployment to real custome

ploy att d of any iteration. They deploy
y week in preparation for the weekly iteration
duled according to business needs.

d off maintenance duties to another team.
ation and provides training as necessary during

When the project ends, the tea
In this case, the team creates dot
its last few weeks.

The XP Tea

Team s de ment requires the information to spread out among many
the team. Different people know:

lesign and program the software (programmers, designers, and architects)
e software is important (product manager)
* The rules the software should follow (domain experts)

* How the software should behave (interaction designers)




Best of Stu dy bestofstudy.com

» How the user interface should look (graphic designers)
» Where defects are likely to hide (testers)
» How to interact with the rest of the company (project manager)

» Where to improve work habits (coach)

The Whole Team

XP teams sit together in an open workspace. At the beginning of e
meets for a series of activities: an iteration demo, a look back, an
These typically take two to four hours in total. The team also meet,
meetings, which usually take five to ten minutes each.

On-Site Customers

sible for defining the

e On-site customers—often just called custo

software the team builds.

planning. Customers need to
and stories; determine how to
manage risks; and create an

ith programmers.

e Customers’ most important
highlight the project’s visi
group features into small,
achievable plan by coordinati

e On-site customers mayfo real customers, regardless; customers are
responsible for refining ans by providing feedback from real customers
and other stakeholders. of the venues for this feedback is the weekly
iteration de

e In additj o pl , customers are responsible for providing programmers
with
e reguaikements details upon request.

ally fproduct managers, domain experts, interaction designers, and
bu nalysts play the role of the on-site customer.

duct manager (aka product owner)

e The product manager has only one job on an XP project, that job is to maintain
and promote the product vision.

e In practice, this means documenting the vision, sharing it with stakeholders,
incorporating feedback, generating features and stories, setting priorities for




Best of Stu dy bestofstudy.com

release planning, providing direction for the team’s on-site customers, reviewing
work in progress, leading iteration demos, involving real customers, and dealing
with organizational politics.

e The best product managers have deep understandings of their markets.

Domain experts (aka subject matter experts)

e Most software operates in a particular industry, such as finandi
specialized rules for doing business. To succeed in that i
must implement those rules faithfully and exactly. These ru
and knowledge of these rules is domain knowledge.

e Most programmers have gaps in their domain kn
e The team’s domain experts are res i figuring out these details and

having the answers at their finger
matter experts, are experts in their

eir time with the team, figuring out the details
ady to answer questions when programmers

e Domain experts spend most
of upcoming stories and standin
ask.

Interaction designers

e is the public face of the product. For many users, the Ul is the
the product’s quality solely on their perception of the Ul

e The user int
product.

ners help define the product Ul Their job focuses on
sers, their needs, and how they will interact with the product.
such tasks as interviewing users, creating user personas,

Business analysts

On an XP team, business analysts augment a team that already contains a product
manager and domain experts. The analyst continues to clarify and refine customer
needs, but the analyst does so in support of the other on-site customers, not as a




Best of Stu dy bestofstudy.com

replacement for them. Analysts help customers think of details they might otherwise
forget and help programmers express technical trade-offs in business terms.

Programmers
e The bulk of the XP team consists of software developers in a variety of

specialties. Each of these developers contributes directly to creating working
code.

e If the customers’ job is to maximize the value of the product#then the

programmers’ job is to minimize its cost.

e Programmers spend most of their time pair programming g test-diiven
development, they write tests, implement code and incre 8si
architect the application.

ive t

e With the help of the whole team, the program oduce no bugs in

completed software.

ish coding standards that
the code.

e At the beginning of the project, the
allow them to collectively shate resp

the res ility to fix any problem they see,
ication it touches.

e Programmers have the righ
no matter which part of the a

e Programmersrelyonc ormation about the software to be built.

Designers and archiitécts

Expert designe da ts are necessary. They contribute by guiding the team’s
incremental dési architecture efforts and by helping team members see ways of
simplifying co designs.

hni ecialists

XP the “programmer” role includes other software development roles. The
grammers could include a database designer, a security expert, or a network
chitect.

o XP programmers are generalizing specialists. Although each person has his own
area of expertise, everybody is expected to work on any part of the system that

needs attention

Testers




Best of Stu dy bestofstudy.com

e Testers help XP teams produce quality results from the beginning.

e They help customers identify holes in the requirements and assist in customer
testing.*

e Testers also act as technical investigators for the team. They help the team
identify whether it is successfully preventing bugs from reaching finished code.

e Testers also provide information about the software’s non-functional
characteristics, such as performance, scalability, and stability.

e When testers find bugs, they help the rest of the team figure out whag went
wrong so that the team as a whole can prevent thos ds from
occurring in the future.

Adopting XP

Before adopting XP, you need to decide whether it’s app ur situation.

Often, people’s default reaction to hearing about XP i ay, , of course that

works for other teams, but it couldn’t possibly for

XP’s applicability is based on organizations a op t types of projects.

Is XP Right for Us?

You can adopt XP in many differe
recommendations about your

nditions; here are some prerequisites and
en ment.

)

Prerequisite #1: Manageme oK't

It's very difficult to
best., you will need
solely allocate
testers

P in the face of opposition from management. Active support is
ollowing: A common workspace with pairing ,Team members

eX ct, A product manager, on-site customers, and integrated

If mana tis

upportive.

Think about what the decision-makers care about. What does an
ational success mean to your management? What does a personal success mean?
adopting XP help them achieve those successes? What are the risks of trying

of your managers’ ideas of success, not your own success.

Prerequisite #2: Team Agreement




Best of Stu dy bestofstudy.com

Just as important as management support is the team’s agreement to use XP. If team
members don’t want to use XP, it’s not likely to work. XP assumes good faith on the part
of team members—there’s no way to force the process on somebody who's resisting it.

If people resist...It’s never a good idea to force someone to practice XP against his will. In
the best case, he’ll find some way to leave the team, quitting if necessary. In the worst
case, he'll remain on the team and silently sabotage your efforts.

One way to help people agree to try XP is to promise to revisit the decision on a specific

date. (Allow two or three months if you can.) At that point, if the team doesn’t want to
continue using XP, stop.

Prerequisite #3: A Colocated Team

tices. In order to
gether in the same

XP relies on fast, high-bandwidth communication for f its
achieve that communication, your team member
room.

If your team isn’t colocated...

eds t

Colocation makes a big difference jfiteam effectivenéss. Don’t assume that your team
can’t sit together; be sure that brin e team er is your first option.

manager, determi the team will develop. In other words, their
decisions determin value of the software. Of all the on-site customers, the product
manager is likel important. She makes the final determination of value. A

good product oose features that provide value to your organization.

If your

t manager is too busy to be on-site...

an gxperienced product manager who makes high-level decisions about
orities, but who isn’t available to sit with the team full-time, you may be
a business analyst or one of the other on-site customers to act as a proxy.

isite #5: The Right Team Size
For teams new to XP, however, | recommend 4 to 6 programmers and no more than 12
people on the team. [ also recommend having an even number of programmers so that

everyone can pair program.

If you don’t have even pairs...




Best of Stu dy bestofstudy.com

The easiest solution to this problem is to add or drop one programmer so you have even
pairs.

Prerequisite #6: Use All the Practices
You may be tempted to ignore or remove some XP practices, particularly ones that make
team members uncomfortable. Be careful of this. XP is designed to have very little

waste. Nearly every practice directly contributes to the production of valuable software.

If practices don't fit...

You may think that some XP practices aren’t appropriate for your organizati
may be true, but it’s possible you just feel uncomfortable or unfamifigg wi ice.

Recommendation #1: A Brand-New Codebase

Easily changed code is vital to XP. If your code is cumbersom change, you’ll have
difficulty with XP’s technical practices, XP teams put f ef into keeping their
code clean and easy to change.

Recommendation #2: Strong Design SKi

Simple, easily changed design is XP/
team—preferably a natural leader

XP relies on refactoring to cot improve existing designs, so any language that
makes refactoring difficult willis P difficult. Of the currently popular languages,
object-oriented a
refactor.

Recommendagion #4: A erienced Programmer-Coach

eds a“Coach. The best coaches are natural leaders—people who remind

thefright thing by virtue of who they are rather than the orders they give.

needs to be an experienced programmer so she can help the team with
aical practices.

XP requires that everybody work together to meet team goals. There’s no provision for
someone to work in isolation, so it’s best if team members enjoy working together.




Go!

e Areyouready to adopt XP?

Best of Stlldy bestofstudy.com

e Great! Your first step is to arrange for your open pac

e Find an appropriate project for the
valuable

e At the same time, figure ou
executive sponsor and othe

Equipment:

Pairing station

k on. Look for a project that’s

r team. Talk with your project’s
whom to include as your on-site

oU'll need supplies for the team’s open
)ping list.

oise-dampening partitions to define your team’s workspace and prevent
oise'pollution.

enty of wall-mounted whiteboards for discussions and charts . Ferrous
(magnetic) whiteboards are best because you can stick index cards to
them with magnets.

Two big magnetic whiteboards for your release and iteration plans.

A large plastic perpetual calendar (three months or more) for marking
important dates and planned absences




Best of Stlldy bestofstudy.com

e Any other equipment you normally use.

Software:
e Aunit-testing tool such as the xUnit family
e Anautomated build tool such as the Ant family.
e Any other software you normally use.

Supplies:
e Pencils for index cards.
e Food.
e Dry-erase markers for whiteboards, water-based flip-chartgmarKers for

flip charts.
e Magnets for sticking papers to whiteboards.
« Any other supplies you normally use.

The Challenge of Change

a big change for
s, XP will seem loose

It's a fact of life: change makes people uncomfortable.
your team. If you previously used a rigid, docume
and informal.

Expect team members and stakeholders mfortable. This discomfort can
extend into the larger organization

Discomfort and a feeling of chaos i mal for any team undergoing change, but that

doesn't make it less challenging. chaotic feeling to continue for at least two
months. Give yourselves four s to feel truly comfortable with your new

process. If you're adopting XP ally, it will take longer.

To survive the tran
benefits does it
benefits does i
remember the

ation, you need to know why you are making this change. What
e organization? To the team? Most importantly, what

Make steady progress
e Finish the features that you consider most valuable first

e Show you working software that reflects our progress every week, on
(day of week) at (time) in (location)




Best of Stu dy bestofstudy.com

e Be honest and open with you about our successes, challenges, and what
we can reasonably provide

Final Preparation

Before starting XP, it's a good idea to discuss working agreements—that is, which
practices your team will follow .

Discuss your roles and what you expect from each other. It’s best to hold these
conversations as collaborative team discussions. Try to avoid assigning role
people orders.

giving

In the final weeks before starting your new XP project, review the pr3

When you've finished these preparations, if you have your tea
codebase from scratch—you’re ready to go.

Well... yes. You can follow the incremental approac leg rgjects use,
Teams that adopt XP incrementally make ments, but it’s the teams
that adopt it all at once that really excel.
and the will to succeed. Do it!

Be bold. You have the right people, the right wor

Applying XP to a Brand-New mended)

When starting a brand-new XP
chaotic as everyon up to speed. During the first month, on-site customers will be
working out the se plan, programmers will be establishing their technical
infrastructure, a ill be learning how to work together.

the release plan, but you won't have a release plan yet.

Instead, think of one feature that will definitely be part of your first release. Brainstorm

1

a few must-have stories for that feature. These first few stories should sketch out a ’

vertical stripe” (see Figure) of your application.




Best of Stlldy bestofstudy.com

elep
J2WOEND
uoljew.ojul

sul||g

that the programmers already un
customers need to spend answe
creating the release plan.

stories at a time and check your progress
pleted stories even if your initial plan is wildly

During the iteration, work on j
every day. This will help you de
inaccurate.

nning, programmers should start establishing their technical
integration machine, create your version control repository,

After you've finishe
infrastructure. Seaup
and so forth.

p, sta orking on your stories.

with each other.




Best of Stu dy bestofstudy.com

At this point, you can break into pairs and work normally. It's also a good time to
schedule your first coding standards discussion. For that first meeting, you can usually
just document what you agreed on while working as a group.

While the programmers are working on stories, customers and testers should work on
the vision and release plan and pick a date for your first release.

Each subsequent iteration will be a little easier to plan.

Applying XP to an Existing Project

If you have a legacy project—you can achieve the results, but it k e. In
this case, adopt XP incrementally.

The big decision

Other than change itself, the biggest challenge in applyi P to
not writing tests, refactoring, or cleaning up your ta . T
setting aside enough time to pay down technigal de

xisting project is
iggest challenge is

In other words, you incur new technical de your deadlines.

These first steps will allow you to
make progress on new stories. A
organizing your bug backlog.

eadily pay down
bug rat

chnical debt while continuing to
r new code drops, you can start

Organize your backlog

If your team is like most team ug database is full of to-dos, questions, feature
requests, and gen defects. Customers and testers go through the database and
eliminate duplicate unimportant issues. Close feature requests by turning them
into storiesorr ing

Depending g sizejof your bug database, you may not be able to do this work in a

hi y at it every iteration, just as the programmers do with technical

level and you may need the programmers to estimate the cost of fixing some of the bugs.

Close or defer all the bugs that you decide not to fix in this release. You can revisit them
when you plan the next release. At this point, all that remains in the database is bugs




Best of Stlldy bestofstudy.com

that you will fix. Turn these bugs into stories, have the programmers estimate any that
remain unestimated, and put them in the release plan.

Move testers forward

When you start this process, your testers will probably spend their time testing each

release prior to delivery. A large part of their workload is likely to be manual regression
testing.

The programmers’ focus on test-driven development will slowly create an mated
regression suite and reduce the pressure on the testers.

Emerge from the darkness
This process will allow you to reduce technical debt, increase code @ and remove

defects.

ion uses a phase-based approach to
development, you may be ablé e XP development practices even if you can't

use the other practiges

Your organizatiopgma nt to try XP within your existing phase-based structure. Your
best course of Action is t vince your organization to let you try XP’s simultaneous

tions are a starting point; talk to your mentor for more specific

y planning phase
ganization may have a planning phase or planning gate that expects you to
deliver a detailed plan. If you can, allocate a month for the planning phase and use it to

run four actual iterations.

Mandatory analysis phase




Best of Stu dy bestofstudy.com

If your organization conducts an upfront analysis phase, you may receive a
requirements document. In this case, decompose the requirements document into

stories. One starting point is to create a story out of each sentence including the words “

must,” “shall,” or “should.”

Mandatory design phase

XP assumes the use of incremental design and architecture that is intimately tied to
programming with test-driven development. An upfront design phase has little to add to
this approach.

If you can, conduct actual XP iterations during the design phase w tRe first
stories in your release plan. Use the time to create an initial desi d ar ture

incrementally. Document the results in your design document.

Mandatory coding phase

XP fits well into the coding phase. Break your coding ph 0 on ek iterations and
conduct XP as normal.

Mandatory testing phase
sed organization that considers

ase might schedule too little time
g. However, testing is an important part of XP

XP performs a lot of testing every i
XP to be the coding phase and exp
for coding and too much time for t
and should remain integrated.
Mandatory deployment phasg

With a good build, you should B o deploy at the end of any iteration.

You can schedule X ap-up activities for the deployment phase.

Assess You

Supposé @ ve beelt using XP for a few months. How can you tell if you're doing it

ate measure is the success of your project, but you may wish to review and
r approach to XP as well.

To help achieve this lets do a quiz that focuses on five important aspects of agile
development. It explores results rather than specific practices, so you can score well
even after customizing XP to your situation.

This quiz assesses typical sources of risk. Your goal should be to achieve the maximum
score in each category.




Best of Stu dy bestofstudy.com

Any score less than the maximum indicates risk, and an opportunity for improvement.

To take the quiz, answer the following questions and enter your scores on a photocopy
of the blank radar diagram (Figure 4-2). Don’t give partial credit for any question, and if
you aren't sure of the answer, give yourself zero points. The result should look
something like Figure 4-1.

The score of the lowest spoke identifies your risk, as follows:

* 75 points or less: immediate improvement required (red)
* 75 to 96 points: improvement necessary (yellow)

* 97,98, or 99: improvement possible (green)

* 100: no further improvement needed x

Thinking
——100

——99
=98

-—97

Developing [ 7‘/'/'/34.“; . X '\*m{'\"\'\’"\ )\ Collaborating
\/\
/‘(-;
>
-
>
>4
< x
Planning\ /Releasing
Table 4-1. Thinking

Question Yes MNo  XFP Practices
Do programmers aitigue all production code with at least one other programmer? 5 0 Pair Programming
Do all team members consistently, thoughtfully, and rigorously apply all the 75 0 Pair Programming; Root-
practices that the team has agreed to use? (ause Analysis;

Retrospectives
Are team members generally focused and engaged at work? 5 0 Energized Work
Are nearly all team members aware of their progress toward meeting team goals? 4 0 Informative Workspace
Do any problems recur more than once per quarter! 0 5 Root-Cause Analysis;

Retrospectives
Does the team improve its process in some way at least once per month? 5 0 Retrospectives

Table 4-2. Collaborating
Cruwesfion Tes Mo ¥XP Practices

[0 programemeds evel make guessas fathel than getting ansaels 1o gquestions? 1] 75 The XF Team




Duestion Tes Ha XFP Pracfices
Are plogfamme ez u sually able to stan gettinginfoima tion (3sopposed to sending 4 a Sit Together
a fequest and waiting fol a Fesponse) s soom as they discovwe! theil need for it?
Do team membels genefally comemunicate withowt confusson? 4 a Sit Together ; Ubiguitous
Language
Do nezariy 2l team members Wust each other? 4 a The EF Team; Sit Together
Do team members genefally know what othel team membefs afie workang on? 1 a Stand-lUp Meetings
Dhpee-s thee tezen demeornestiate its plogless to stakeholdefs at least cnce pel month ¥ 4 a fteration Demo; Repofting
Dipe-s thie team piovide a wolking installation of its softears fol staksholders to 1 a fteraton Demo
£ty at beast omoe pefl month?
Are all important stakehslbders ouTently happy with the team’s plogfess? E a Reporting; Herason Demo;
Real Customesl moolvemet
Do all smpoftant stakeholders cutTently thast the team’s ability to delver? E 1] Trust; Aeporting
V|
Table 4-3. Releasing
Question Yes No XP Practices
Can any programmer on the team currently build and test the software, and getan 25 0 Ten-Minute Build
unambiguous success/fail result, using 2 single command?
Can any programmer on the team currently build a tested, deployable release using a 5 0 Ten-Minute Build
single command?
Do all team members use version control for all project-related artifacts that aren’t 25 0 Version Control
automatically generated?
Can any programmer build and test the software on any development workstation with 25 0 Version Control
nothing but a dean check-out from version control?
When a programmer gets the latest code, is he nearly always confident that it willbuild 5 0 Continuous Integration
successfully and pass all its tests?
Doallprogrammersintegrate theirwork withthe mainbodyof codeatleastonceperday? 4 0 Continuous Integration
Does the integration build currently complete in fewer than 10 minutes? 4 0 Ten-Minute Build
Do nearly all programmers share 3 joint aesthetic for the code? 1 0 Coding Standards
Do programmers usually improve the code when they see opportunities, regardless of - 0 Collective Code
who originally wrote it? Ownership;Refactoring
Are fewer than five bugs per month discovered in the team’s finished work? 1 0 No Bugs
Table 4-4. Planning
Question Yes No  XPPractices
Do nearly all team members understand what they are building, why they're building it, 25 Vision
and what stakeholders consider success?
Do all important stakeholders agree on what the team is building, why, and what the 25 Vision

stakeholders jointly consider success?

o




Qruesficn s Mo XP Practices

[izezs the t=am hawe a plam fol achésving ssccess? Release Plarming

Dozstheteam regulany seck out new informaticn and use ittoEmpliove its plan for success? 2 Release Flarming

Doz=theteam's planincofpolate the expeltize of business people aswell 2 ploglammers, 3 1] The Flanning Game

and do nzally all invodwed agiee the plan is achaevabis?

Are nearty 2l the line ftems in the team's plan custome -centfic, fesutts-ofiented, and 4 1] Stolies

ofdef -independent?

Dizezs the t=am compale its plogress to the plan at predefined, timeboxsd intefvals, no 4 1] lefations

longer than one month apat, and revise its plan accofdingly™

Doz the team make delively commitments pliol toeach imebosed intefval, thenneally 4 1] lefations; “Done

ahways delived on those commitments? Dome™; Slack;
Estimating

After a Bne item in the planis mafked “complete,” do team members latel perform 0 15 “Dicne Done™

unexpected additional work, such as bug fixes of felease polish, to finish #7

[ioezs the t=am neally abways deliwel o its felease commitmests? 3 1] Risk Management

Table 4-5. Developing
Qruesficn ez Mo XP Praclices

Afe programemers neaily always confident that the code they've wiitten fecently 35
does what they intended it to?

Are all programmefs comfofable making changes to the ode? 15

[ plogramemels have mofe than one debug session pel week that excesds 10 1]
minwtes?

[z 2l plosglamemes agies that the code & at least sigivtly bettel eadh week than 15
it wzs the week before?

Dioezs the team delivel customer-valued stofies ewely itefation? 3

[Dommexpectsd design dhanges Fequire dfficult of coctly changes toessstingoode? O

Do programemeds use wiolking oode to give them infofmation akboet techmical 1
problems?

Do any programemels opbmize osde without conducting peffolmance tests first?

Do proglamemes evel spend mols than an houl optimizing code without
rustmmels apploval?

Ale on-site customels fafely sufplissd by the behavior of the software at the end 4
of an kefation?

Is thele mole tham one bug pef month inthe business logic of completed stofes?

Afe any team membels unsule about the quality of the softeare the team is o
producing?

Test-Driven Development

Test-Diven Development
Test-[iven Development

Refactoling; Incfemental
Design and Aldhitectuls

Herations; Indfemental Design
and Architecturs

Simple Desagn
Spike Solutions

Performance Jptimization
Fefformance Optimization

Inciemental Requirfements

(ustomel Tests

Explofatofy Testing; ltefation
Demo; Real Customer
Irvolvement

&/




	Understanding XP
	How It Works
	Planning
	Analysis
	Design and coding
	Testing
	Deployment

	The XP Team
	The Whole Team
	On-Site Customers
	The product manager (aka product owner)
	Domain experts (aka subject matter experts)
	Interaction designers
	Business analysts
	Programmers
	Designers and architects
	Technical specialists
	Testers

	Adopting XP
	Is XP Right for Us?
	Prerequisite #1: Management Support
	If management isn’t supportive.
	Prerequisite #2: Team Agreement
	Prerequisite #3: A Colocated Team
	If your team isn’t colocated...
	Prerequisite #4: On-Site Customers
	If your product manager is too busy to be on-site...
	Prerequisite #5: The Right Team Size
	If you don’t have even pairs...
	Prerequisite #6: Use All the Practices
	If practices don’t fit...
	Recommendation #1: A Brand-New Codebase
	Recommendation #2: Strong Design Skills
	Recommendation #3: A Language That’s Easy to Refactor
	Recommendation #4: An Experienced Programmer-Coach
	Recommendation #5: A Friendly and Cohesive Team

	Go!
	Equipment:
	Software:
	The Challenge of Change
	Final Preparation
	Applying XP to a Brand-New Project (Recommended)
	Applying XP to an Existing Project
	The big decision
	Organize your backlog
	Fix important bugs
	Move testers forward
	Emerge from the darkness
	Applying XP in a Phase-Based Organization
	Mandatory planning phase
	Mandatory analysis phase
	Mandatory design phase
	Mandatory coding phase
	Mandatory testing phase
	Mandatory deployment phase

	Assess Your Agility

