

 Best of Study bestofstudy.com

Agile Technologies

Module-1

Why Agile? : Understanding Success, Beyond Deadlines, The Importance of Organizational
Success, Enter Agility, How to Be Agile?: Agile Methods, Don’t Make Your Own Method,
The Road to Mastery, Find a Mentor.

The Genesis of Agile, Introduction and background, Agile Manifesto, and Principles,
Simple Design, User Stories, Agile Testing, Agile Tools

 Best of Study bestofstudy.com

Why Agile?

Agile development is popular. All the cool kids are doing it: Google, Yahoo, Symantec,
Microsoft and the list goes on.

In fact, I don’t recommend adopting agile development solely to increase productivity.
Its benefits—even the ability to release software more frequently—come from working
differently, not from working faster.

Understanding Success

The traditional idea of success is delivery on time, on budget, and according to
specification.
Here we provide some classic definitions:

Beyond Deadlines

There has to be more to success than meeting deadlines... but what?

When we were a kids, we was happy just to play around. We loved the challenge of

programming. When we got a program to work, it was a major victory. Back then, even a

program that didn’t work was a success of some sort, as long as we had fun writing it.

My definition of success centered on personal rewards.

As I gained experience, my software became more complicated and I often lost track of

how it worked. I had to abandon some programs before they were finished. I began to

believe that maintainability was the key to success—an idea that was confirmed as I

entered the workforce and began working with teams of other programmers. I prided

myself on producing elegant, maintainable code. Success meant technical

excellence.

 Best of Study bestofstudy.com

Despite good code, some projects flopped.. I came to realize that my project teams were

part of a larger ecosystem involving dozens, hundreds, or even thousands of people. My

projects needed to satisfy those people ... particularly the ones signing my paycheck. In

fact, for the people funding the work, the value of the software had to exceed its cost.

Success meant delivering value to the organization.

These definitions aren’t incompatible. All three types of success are important (see

Figure below). Without personal success, you’ll have trouble motivating yourself and

employees. Without technical success, your source code will eventually collapse under

its own weight. Without organizational success, your team may find that they’re no

longer wanted in the company.

The Importance of Organizational Success

Organizational success is often neglected by software teams in favour of the more easily

achieved technical and personal successes. Rest assured, however, that even if you’re

not taking responsibility for organizational success, the broader organization is judging

your team at this level. Senior management and executives aren’t likely to care if your

software is elegant, maintainable, or even beloved by its users; they care about results.

That’s their return on investment in your project. If you don’t achieve this sort of

success, they’ll take steps to ensure that you do.

Unfortunately, senior managers don’t usually have the time or perspective to apply a

clear solution to each project. They wield swords, not scalpels. They rightly expect their

project teams to take care of fine details.

When managers are unhappy with your team’s results, the swords come out. Costs are

the most obvious target. There are two easy ways to cut them: set aggressive

 Best of Study bestofstudy.com

deadlines to reduce development time, or ship the work to a country with a lower

cost of labour or both.

These are clumsy techniques. Aggressive deadlines end up increasing schedules rather

than reducing them and off- Shoring has hidden costs.

so, it’s time for your team to take back responsibility for its success: not just for

personal or technical success, but for organizational success as well.

WHAT DO ORGANIZATIONS VALUE?

Although some projects’ value comes directly from sales, there’s more to organizational

value than revenue. Projects provide value in many ways, and you can’t always measure

that value in dollars and cents.

Aside from revenue and cost savings, sources of value include:*

• Competitive differentiation

• Brand projection

• Enhanced customer loyalty

• Satisfying regulatory requirements

• Original research

• Strategic information

Enter Agility

Will agile development help you be more successful? It might. Agile development

focuses on achieving personal, technical, and organizational successes. If you’re

having trouble with any of these areas, agile development might help.

Organizational Success

Agile methods achieve organizational successes by focusing on delivering value and

decreasing costs. This directly translates to increased return on investment. Agile

methods also set expectations early in the project, so if your project won’t be an

organizational success, you’ll find out early enough to cancel it before your organization

has spent much money.

Specifically, agile teams increase value by including business experts and by focusing

development efforts on the core value that the project provides for the organization.

 Best of Study bestofstudy.com

Agile projects release their most valuable features first and release new versions

frequently, which dramatically increase value. When business needs change or when

new information is discovered, agile teams change direction to match.

Agile teams decrease costs as well. They do this partly by technical excellence; the best

agile projects generate only a few bugs per month. They also eliminate waste by

cancelling bad projects early and replacing expensive development practices with

simpler ones.

Agile teams communicate quickly and accurately, and they make progress even when

key individuals are unavailable. They regularly review their process and continually

improve their code, making the software easier to maintain and enhance over time.

Technical Success

Extreme Programming, the agile method, is particularly adept at achieving technical

successes. XP programmers work together, which helps them keep track of the

important details necessary for great work and ensures that at least two people review

every piece of code.

Programmers continuously integrate their code, which enables the team
to release the software whenever it makes business sense. The whole team focuses on
finishing each feature completely before starting the next, which prevents unexpected
delays before release and allows the team to change direction at will.

In addition to the structure of development, Extreme Programming includes advanced

technical practices that lead to technical excellence. The most well-known practice is
test driven development, which helps programmers write code that does exactly what

they think it will. XP teams also create simple, ever-evolving designs that are easy to

modify when plans change.

Personal Success

Personal success is, well, personal. Agile development may not satisfy all of your

requirements for personal success. However, once you get used to it, you’ll probably

find a lot to like about it, no matter who you are:

Executives and senior management
They will appreciate the team’s focus on providing a solid return on investment and the

Software’s longevity.

 Best of Study bestofstudy.com

Users, stakeholders, domain experts, and product managers

They will appreciate their ability to influence the direction of software development, the

team’s focus on delivering useful and valuable software, and increased delivery

frequency.

Project and product managers

They will appreciate their ability to change direction as business needs change, the

team’s ability to make and meet commitments, and improved stakeholder satisfaction.

Developers

They will appreciate their improved quality of life resulting from increased technical
quality, greater influence over estimates and schedules, and team autonomy.

Testers

They will appreciate their integration as first-class members of the team, their ability to

influence quality at all stages of the project, and more challenging, less repetitious work.

How to Be Agile

What does it mean to “be agile”?

The answer is more complicated than you might think. Agile development isn’t a specific

process you can follow.

Agile development is a philosophy. It’s a way of thinking about software development.

The systematic description of this way of thinking is the Agile Manifesto, a collection of

4 values and 12 principles

To “be agile,” you need to put the agile values and principles into practice.

Agile Methods

A method, or process, is a way of working. Whenever you do something, you’re

following a process. Some processes are written, as when assembling a piece of

furniture; others are ad hoc and informal, as when I clean my house.

 Best of Study bestofstudy.com

Agile methods are processes that support the agile philosophy. Examples include
Extreme Programming and Scrum.

Agile methods consist of individual elements called practices. Practices include using
version control, setting coding standards, and giving weekly demos to your
stakeholders.

Don’t Make Your Own Method

You might want to create your own agile method by mixing together practices from

various agile methods. At first glance, this doesn’t seem too hard. There are some of

good agile practices to choose from.

However, creating a brand-new agile method is a bad idea if you’ve never used agile

development before. Just as there’s more to programming than writing code, there’s

more to agile development than the practices.

The practices are dependent on agile principles. Unless you understand those principles

unless you’ve already mastered the art of agile development—you’re probably not

going to choose the right practices.

Every project and situation is unique, of course, so it’s a good idea to have an agile

method that’s customized to your situation. Rather than making an agile method from

scratch, start with an existing, proven method and iteratively refine it. Apply it to your

situation, note where it works and doesn’t, make an educated guess about how to

improve, and repeat.

 Best of Study bestofstudy.com

 Best of Study bestofstudy.com

 Best of Study bestofstudy.com

The Road to Mastery

Mastering the art of agile development requires real-world experience using a specific,

well-defined agile method.

Extreme Programming for this purpose. It has several advantages:

• Of all the agile methods, XP is the most complete. It places a strong emphasis on

technical practices in addition to the more common teamwork and structural practices.

• XP has undergone intense scrutiny. There are thousands of pages of explanations,

experience reports, and critiques out there. Its capabilities and limitations are very well

understood.

To master the art of agile development—or simply to use XP to be more successful—

follow these steps:

1. Decide why you want to use agile development. Will it make your team and

organization more successful? How?

2. Determine whether this approach will work for your team.

3. Adopt as many of XP’s practices as you can. XP’s practices are self-reinforcing,

so it works best when you use all of them together.

4. Follow the XP practices rigorously and consistently.

5. As you become confident that you are practicing XP correctly—again, give it several

months—start experimenting with changes ,Each time you make a change, observe

what happens and make further improvements.

Find a Mentor

As you adapt XP to your situation, you’re likely to run into problems and challenges.

For these situations, you need a mentor: an outside expert who has mastered

the art of agile development.

NOTE

If you can get an expert to coach your team directly, that’s even better.

However, even master coaches benefit from an outside perspective when they

 Best of Study bestofstudy.com

encounter problems.

The Genesis of Agile, Introduction and background

In the early 1990s, PC computing began to rise in organizations, but software

development faced a hurdle. At that time, people used to call this crisis the "the

application development crisis." At that time, organizations used to estimate three years

between a validated business need and an actual application in production. But,

business doesn't work like that. Even those days, businesses moved faster than three

years' time span.

If you had to wait for three years to solve the problems your business faces, your

business requirements, systems, and even the entire business can change in three years.

Because of this time crisis, businesses used to cancel many projects halfway. And many

projects failed to match the requirements and needs.

Before agile came, several industries like software, aerospace, manufacturing used to

follow the waterfall approach. They would identify problems and work to create a plan

that solves the problem. For example, the development team used to- set requirements

and work scope for a project

 Design the product based on predefined requirements

 Build the product

 Test the product

 Identify problems during the testing

 Fix the problem

 Launch the finished product

This waterfall approach needs you to stick to the plan set at the very beginning of your

project. That means you can't make any necessary changes along the way, even if it's

needed. Now, this created a lot of havoc since a fixed plan could be inconvenient.

Moreover, the waterfall approach was all about bringing a finished product to the

market, even if it takes years to complete.

The waterfall approach was creating a lot of problems for both the developer and the

customer. As it would take years to come up with a solution, the problem's nature

would change. Eventually, when they used to launch the planned solution in the market,

it would become outdated. These delays in product delivery led to the delivery of an

unfinished product that no longer had any market fit.

Industries were Frustrated with the Waterfall Approach

Several industries started to show their frustration with the waterfall approach. During

the 1990s, a large crowd of software development teams began to plan for a new

 Best of Study bestofstudy.com

approach. Among them, Jon Kern was one such frustrated thought leader who became

increasingly active to find something more "timely and responsive."

Agile Manifesto and Principles

In 2001, a small group of software gurus, tired of the traditional approach, got together
and wrote a manifesto which became a guiding principle for Agile Software
development.

The Manifesto for Agile Software Development is a document produced by 17
developers at Snowbird, Utah in 2001. This document consists of 4 Agile Values and 12
Agile Principles. These 12 principals and 4 agile values provide a guide to Software
Developers. The Manifesto for Agile Software Development emerged as a
transformative guide to Software Development.

4 Values of Manifesto for Agile Software Development

1. Individuals and Interactions over Processes and Tools: Focuses on the

importance of effective communication and collaboration among team members.

2. Working Software over Comprehensive Documentation: Prioritizes the delivery

of functional software as the primary measure of progress.

3. Customer Collaboration over Contract Negotiation: Encourages customers and

stakeholders to have active involvement throughout the development process.

4. Responding to Change over Following a Plan: On changing requirements,

embracing flexibility and ability to adapt even late in the development process.

Principles of Manifesto for Agile Software Development:

1) Customer Satisfaction through Early and Continuous Delivery:
This principle concentrates on the importance of customer satisfaction by providing

information to customers early on time and also with consistency throughout the

development process.

2) Welcome Changing Requirements, Even Late in Development:

Agile processes tackles change for the customer’s competitive advantage. Even late in

development, changes in requirements are welcomed to ensure the delivered software

meets the evolving requirements of the customer.

3) Deliver Working Software Frequently:

This principle encourages the regular release of functional software increments in short

iterations. This enables faster feedback, and adaptation to changing requirements.

https://www.geeksforgeeks.org/what-is-software-development/

 Best of Study bestofstudy.com

4) Collaboration between Business Stakeholders and Developers:

This says the businesspeople and developers must work together daily throughout the

project. There should be communication and collaboration between stakeholders and

the development team regularly. This is crucial for understanding and prioritizing

requirements effectively.

5) Build Projects around Motivated Individuals:

This promotes in giving developers the environment and support they need and trust

them to complete the job successfully. Motivated and empowered individuals are more

likely to produce work with quality and make valuable contributions to the project.

6) Face-to-Face Communication is the Most Effective:

Face-to-Face communication is the most effective method of discussion and conveying

information. This principle depicts the importance on direct interaction which helps in

minimizing misunderstandings, and hence effective communication is achieved.

7) Working Software is the Primary Measure of Progress:

This principle emphasizes on delivering functional and working software as the primary

metric for project advancement. It encourages teams to prioritize the continuous

delivery of valuable features, so it ensures that good progress is consistently achieved

throughout the process. The primary goal is to provide customers with incremental

value and also gather feedback early in the project life cycle.

8) Maintain a Sustainable Pace of Work:

Agile promotes sustainable development. All people involved: The sponsors, developers,

and users should be able to maintain a constant pace indefinitely. This principle depicts

the need for a sustainable and consistent development pace. This helps in avoiding

burnout and ensure long-term project success.

9) Continuous Attention to Technical Excellence and Good design:

This principle is on the importance of maintaining high standards of technical craft and

design, so it ensures the long-term ability in maintenance and adaptability of the

software.

10) Simplicity—the Art of Maximizing the Amount of Work Not Done:

Simplicity is essential. The objective here is to concentrate on the most valuable

features and tasks and avoiding unnecessary complexity as the art of maximizing the

amount of work not done is crucial.

 Best of Study bestofstudy.com

11) Self-Organizing Teams: Self-organizing teams provides the best architectures,

requirements, and designs. These help in empowering teams to make decisions and

organize to optimize efficiency and creativity.

12) Regular Reflection on Team Effectiveness:

This makes the team reflects on how to become more effective in regular intervals and

then adjusts accordingly. Continuous improvement is very crucial for the adapting to

changing circumstances and optimizing the team performance over time.

Simple Design

Agile model In the context of system design is a flexible and adaptive approach to
designing systems that can respond to changing requirements and customer needs. The
key objective is to create a functioning system as soon as possible and to refine it
depending on input from stakeholders. The agile model also promotes customer and
developer involvement, which helps guarantee that the system being created satisfies
end-user requirements.

Agile model places an emphasis on iterative and incremental development, customer
and developer communication, and flexible response to evolving needs. The Agile model
typically consists of several iterations or sprints, each of which is focused on delivering
a specific set of features or functionality. The stakeholders evaluate the work completed
at the conclusion of each sprint and offer feedback, which is then utilized to plan and
prioritize the following batch of tasks. This iterative process makes it possible to quickly
and without substantial delays incorporate changes in requirements or client requests
into the system architecture.

Phases of Agile Model in Designing System

Planning: The team defines the project’s overall goals during the planning phase of the
agile model and decides what must be accomplished throughout each sprint. This
entails determining the project’s scope, identifying the main stakeholders, and
developing a high-level roadmap for the system design. The development methodology,
including the agile procedures and practices to be followed, is also established by the
team.

 Best of Study bestofstudy.com

Requirement Analysis: The team collaborates with the stakeholders throughout the
requirement analysis phase to compile and examine the system’s requirements. This
entails gathering requirements and prioritizing them according to their urgency and
importance. Additionally, the team identifies any potential hazards or limitations that
could affect the project and creates a strategy to mitigate them.

Designing: The team develops intricate designs for the system interfaces and
components at this stage. The team creates any necessary prototypes as well as the
architecture and design patterns that will be employed. This phase’s objectives are to
lay a strong framework for the system and make that the design is scalable and
consistent.

Implementation: The team constructs the system’s individual parts and incorporates
them into the overall design during the implementation phase. The team completes
each sprint with the delivery of usable software. The team also makes adjustments to
the backlog of needs and makes that the system is being developed in accordance with
the design.

Testing: During the testing phase, the team validates the system by putting each
component through its paces and making sure it complies with the specifications. The
crew also finds and resolves any flaws or problems that come up while testing. Making
ensuring the system is high-quality and prepared for deployment is the aim of this
phase.

Deployment: The system is given to the end users during this last phase. The team
deploys the system in collaboration with the stakeholders and offers any required
support and training. This phase’s objective is to guarantee that the system is correctly
implemented and that end users can efficiently utilize it.

These are the six phases of the agile model in designing systems. The key characteristic
of the agile model is that it is iterative and adaptive, allowing for changes and
adjustments to be made throughout the project. This helps to ensure that the system
being designed meets the needs of the end users and that the project is delivered on
time and within budget.

User Stories in Agile

User stories are a key component of agile software development. They are short,

simple descriptions of a feature or functionality from the perspective of a user.

User stories are used to capture requirements in an agile project and help the

development team understand the needs and expectations of the users.

Here are some key characteristics of user stories:

 Best of Study bestofstudy.com

 User-centric: User stories focus on the needs of the user and what they want to

achieve with the software.

 Simple: User stories are short and simple descriptions of a feature or

functionality.

 Independent: User stories can stand on their own and do not rely on other user

stories.

 Negotiable: User stories are open to discussion and can be refined and modified

based on feedback from stakeholders.

 Valuable: User stories provide value to the user and the business.

 Estimable: User stories can be estimated in terms of time and effort required for

implementation.

 Testable: User stories can be tested to ensure they meet the needs of the user.

 Prioritized: User stories are prioritized based on their importance to the user

and the business goals.

 Iterative: User stories are developed iteratively, allowing for feedback and

changes throughout the development process.

 Consistent: User stories follow a consistent format, making them easy to

understand and work with.

 Contextual: User stories are written in a way that provides context to the

development team, helping them understand the user’s needs and goals.

 Acceptance criteria: User stories have clear and specific acceptance criteria that

define when the story is considered “done” and ready for release.

 Role-based: User stories are written from the perspective of a specific user role,

helping to ensure that the development team is building features that are

relevant and useful to that user.

 Traceable: User stories are tracked and linked to specific features and

functionality in the software, making it easy to trace back to the original user

need.

In agile software development, the development team uses user stories to plan and

prioritize work, estimate the effort required for implementation, and track progress

towards completing the user stories.

By using user stories in agile software development, teams can ensure that they are

building software that meets the needs of the users and delivers value to the business.

User stories are considered an important tool in Incremental software development.

Mainly a user story defines the type of user, their need, and why they need that. So in

simple, a user story is a simple description of requirements that needs to be

implemented in the software system.

Pattern of User Story:

https://www.geeksforgeeks.org/software-development/?ref=lbp

 Best of Study bestofstudy.com

As a [type of user], I want [an action], so that [some reason]

Example:

As the project manager of a construction team, I want our team-messaging app to

include file sharing and information update so that my team can collaborate and

communicate with each other in real-time as a result the construction project

development and completion will be fast.

Agile Testing

Agile Testing is a type of software testing that follows the principles of agile software

development to test the software application.

All members of the project team along with the special experts and testers are involved

in agile testing. Agile testing is not a separate phase and it is carried out with all the

development phases i.e. requirements, design and coding, and test case generation.

Agile testing takes place simultaneously throughout the Development Life Cycle. Agile

testers participate in the entire development life cycle along with development team

members and the testers help in building the software according to the customer

requirements and with better design and thus code becomes possible.

Agile Testing has shorter time frames called iterations or loops. This methodology is

also called the delivery-driven approach because it provides a better prediction on the

workable products in less duration time.

 Agile testing is an informal process that is specified as a dynamic type of testing.

 It is performed regularly throughout every iteration of the Software

Development Lifecycle (SDLC).

 Customer satisfaction is the primary concern for agile test engineers at some

stage in the agile testing process.

 Best of Study bestofstudy.com

1. Constant Response

The implementation of Agile testing delivers a response or feedback on an ongoing

basis. Therefore, our product can meet the business needs.

2. Less Documentation

The execution of agile testing requires less documentation as the Agile teams or all the

test engineers use a reusable specification or a checklist. And the team emphases the

test rather than the secondary information.

3. Continuous Testing

The agile test engineers execute the testing endlessly as this is the only technique to e

constant improvement of the product.

4. Customer Satisfaction

In any project delivery, customer satisfaction is important as the customers are exposed

to their product throughout the development process.

As the development phase progresses, the customer can easily modify and update

requirements. And the tests can also be changed as per the updated requirements.

5. Easy and clean code

When the bugs or defects occurred by the agile team or the testing team are fixed in a

similar iteration, which leads us to get the easy and clean code.

6. Involvement of the entire team

As we know that, the testing team is the only team who is responsible for a testing

process in the Software Development Life Cycle. But on the other hand, in agile testing,

the business analysts (BA) and the developers can also test the application or the

software.

7. Test-Driven

https://www.javatpoint.com/software-development-life-cycle
https://www.javatpoint.com/business-analyst

 Best of Study bestofstudy.com

While doing the agile testing, we need to execute the testing process during the

implementation that helps us to decrease the development time. However, the testing is

implemented after implementation or when the software is developed in the traditional

process.

8. Quick response

In each iteration of agile testing, the business team is involved. Therefore, we can get

continuous feedback that helps us to reduce the time of feedback response on

development work.

	Why Agile? : Understanding Success, Beyond Deadlines, The Importance of Organizational Success, Enter Agility, How to Be Agile?: Agile Methods, Don’t Make Your Own Method, The Road to Mastery, Find a Mentor.
	Why Agile?
	Understanding Success
	Beyond Deadlines
	The Importance of Organizational Success
	deadlines to reduce development time, or ship the work to a country with a lower cost of labour or both.

	WHAT DO ORGANIZATIONS VALUE?
	Enter Agility
	Organizational Success
	Technical Success
	Personal Success
	Executives and senior management
	Users, stakeholders, domain experts, and product managers
	Project and product managers
	Developers
	Testers

	How to Be Agile
	Agile Methods
	Don’t Make Your Own Method
	The Road to Mastery
	well-defined agile method.
	Find a Mentor
	NOTE

	The Genesis of Agile, Introduction and background
	Industries were Frustrated with the Waterfall Approach

	Agile Manifesto and Principles
	4 Values of Manifesto for Agile Software Development
	Principles of Manifesto for Agile Software Development:

	Simple Design
	User Stories in Agile
	Pattern of User Story:

	Agile Testing
	1. Constant Response
	2. Less Documentation
	3. Continuous Testing
	4. Customer Satisfaction
	5. Easy and clean code
	6. Involvement of the entire team
	7. Test-Driven
	8. Quick response

